• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 222-236.doi: 10.3901/JME.2023.14.222

• 运载工程 • 上一篇    下一篇

扫码分享

考虑轮胎弛豫特性的轮毂电机驱动电动汽车鲁棒自适应驱动防滑控制

沈童1, 殷国栋1, 任彦君1, 王凡勋1, 梁晋豪1, 沙文瀚1,2   

  1. 1. 东南大学机械工程学院 南京 211189;
    2. 奇瑞新能源汽车股份有限公司电控与架构部 芜湖 241000
  • 收稿日期:2022-01-17 修回日期:2022-12-20 出版日期:2023-07-20 发布日期:2023-08-16
  • 通讯作者: 殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制、电动化智能无人汽车。E-mail:ygd@seu.edu.cn
  • 作者简介:沈童,男,1996年出生,博士研究生。主要研究方向为分布式驱动电动汽车动力学及控制。E-mail:230218564@seu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52025121,51975118)。

Robust Adaptive ASR Control for In-wheel Motor Driving Electric Vehicle Considering Longitudinal Tire Lag

SHEN Tong1, YIN Guodong1, REN Yanjun1, WANG Fanxun1, LIANG Jinhao1, SHA Wenhan1,2   

  1. 1. School of Mechanical Engineering, Southeast University, Nanjing 211189;
    2. Department of Electronic Architecture and Vehicle Control, Chery New Energy Vehicle Co., Ltd., Wuhu 241000
  • Received:2022-01-17 Revised:2022-12-20 Online:2023-07-20 Published:2023-08-16

摘要: 针对轮毂电机驱动电动汽车驱动防滑控制问题,充分考虑轮胎弛豫特性对加速舒适性的影响,提出一种基于线性参数时变-鲁棒保性能极点配置的驱动防滑控制方法。阐述轮胎弛豫特性与传统稳态车轮旋转动力学的耦合机理,指出弛豫特性是造成的滑移率振荡的原因,并依此建立弛豫车轮旋转动力学模型。为了抑制车轮滑转的同时降低弛豫特性对纵向舒适性的影响,基于保性能极点配置方法设计驱动防滑控制系统。针对模型中存在的摄动参数与时变参数,构建鲁棒控制-增益调度策略保证滑移率跟踪的稳定性。数值仿真和实车试验结果表明,所设计的驱动防滑控制系统可以实现任意路面附着与初始车速下车轮滑移率的自适应控制,具有较强的鲁棒性。与传统的驱动防滑控制系统相比,其对车身加速度振荡的抑制更加明显,提高轮毂电机驱动电动汽车的纵向稳定性和加速舒适性。

关键词: 轮毂电机驱动电动汽车, 驱动防滑控制, 轮胎弛豫特性, 鲁棒控制

Abstract: It is more likely for In-wheel motor driving electric vehicle to skid at the start, and the body shock is more serious during acceleration. Considering the influence of tire lag, LPV-based Robust performance-guaranteed pole-placement ASR controller is proposed to solve these problems. Combining the traditional wheel dynamic model and the tire lag, the lagged wheel dynamic model is established. It is proved that the tire lag contributes to the oscillation of wheel slip ratio. For the purpose of preventing the wheel skid as well as alleviating the oscillation of the slip ratio, the performance-guaranteed pole-placement algorithm is adopted for the design of anti-skid strategy. Considering the influence of perturbation parameters and time-varying parameters, robust control and gain-scheduled methods are used to guarantee the stability of slip ratio tracking. Simulation and experiment results confirm the robustness and adaptiveness of the designed ASR controller. Compared with the traditional ASR controller, the oscillation of slip ratio is alleviated and the longitudinal comfort is improved during acceleration.

Key words: in-wheel motor driving electric vehicle, acceleration slip regulation, tire lag, robust control

中图分类号: