[1] ZHU L, ELBAZ D, NING H S. Survey on air levitation conveyors with possible scalability properties[C]//2015 IEEE 12th Intl. Conf. on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl. Conf. on Autonomic and Trusted Computing and 2015 IEEE 15th Intl. Conf. on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). August 10-14, 2015, Beijing, China. IEEE, 2015:802-807. [2] VANDAEL V, LAMBERT P, DELCHAMBRE A. Non-contact handling in micro assembly:Acoustical levitation[J]. Precision engineering, 2005, 29(4):491-505. [3] LI Xin, LI Ning, TAO Guoliang, et al. Experimental comparison of bernoulli gripper and vortex gripper[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(10):2081-2090. [4] SHI Kaige, LI Xin. Optimization of outer diameter of Bernoulli gripper[J]. Experimental Thermal and Fluid Science, 2016, 77:284-294. [5] FAN K C, HO C, MOU J I. Development of a multiple-micro hole aerostatic air bearing system[J]. Journal of Micromechanics and Micro Engineering, 2002, 12(5):636-643. [6] LAURENT G J, MOON H. A survey of non-prehensile pneumatic manipulation surfaces:Principles, models and control[J]. Intelligent Service Robotics, 2015, 8(3):151-163. [7] QIAN Pengfei, PU Chenwei, LIU Lei, et al. Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders[J]. Measurement Science and Technology, 2022, 33(6):5001-5014. [8] PAIVANAS J A, HASSAN J K. Air film system for handling semiconductor wafers[J]. IBM Journal of Research and Development, 1979, 23(4):361-375. [9] CHAPUIS Y A, ZHOU Lingfei, FUJITA H, et al. Multi-domain simulation using VHDL-AMS for distributed MEMS in functional environment:Case of a 2D air-jet micromanipulator[J]. Sensors and Actuators A:Physical, 2008, 148(1):224-238. [10] DAHROUG B, LAURENT G J, GUELPA V, et al. Design, modeling and control of a modular contactless wafer handling system[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). May 26-30, 2015, Seattle, Washington. IEEE, 2015:976-981. [11] KONISHI S, FUJITA H. A conveyance system using air flow based on the concept of distributed micro motion systems[J]. Journal of microelectromechanical systems, 1994, 3(2):54-58. [12] ZEGGARI R, YAHIAOUI R, MALAPERT J, et al. Design and fabrication of a new two-dimensional pneumatic micro-conveyor[J]. Sensors and Actuators A:Physical, 2010, 164(1-2):125-130. [13] ELBAZ D, BOYER V, BOURGEOIS J, et al. Distributed part differentiation in a smart surface[J]. Mechatronics, 2012, 22(5):522-530. [14] MOON H, LUNTZ J. Distributed manipulation of flat objects with two airflow sinks[J]. IEEE Transactions on Robotics, 2006, 22(6):1189-1201. [15] DELETRRA A, LAURENT G J, LEFORT P N. A new contactless conveyor system for handling clean and delicate products using induced air flows[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. October 18-22, 2010, Taipei, Taiwan, China IEEE, 2010:2351-2356. [16] VANOSTAYEN R A J, SCHMIDT R H M, PHUC V H. Apparatus for carrying and transporting a product:U.S., 14/702446[P]:2015-11-05. [17] VAN R J, WESSELINGH J, VANOSTAYEN R A J, et al. Planar flat product transport using viscous traction[C]//STLE/ASME 2008 International Joint Tribology Conference. October 20-22, 2008, Miami, Florida, USA. American Society of Mechanical Engineers Digital Collection, 2008:355-357. [18] VAN R J, WESSELINGH J, VANOOSTAYEN R A J, et al. Planar wafer transport and positioning on an air film using a viscous traction principle[J]. Tribology International, 2009, 42(11-12):1542-1549. [19] VAN OSTAYEN R A J, VAN E J, SCHMIDT R H M. Contact-less thin substrate transport using viscous traction[C]//2012 Second Workshop on Design, Control and Software Implementation for Distributed MEMS. April 02-03, 2012, Besancon, France. IEEE, 2012:14-21. [20] WESSELINGH J. Contactless positioning using an active air film[M]. Delft:IOP Publishing, 2011. [21] KU P J, WINTHER K T, STEPHANOU H F, et al. Distributed control system for an active surface device[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.No.01CH37164). May 21-26, 2001, Seoul, Korea(South). IEEE, 2001, 4:3417-3422. [22] FUKUTA Y, CHAPUIS Y A, MITA Y, et al. Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation[J]. Journal of Microelectromechanical Systems, 2006, 15(4):912-926. [23] LAURENT G J, DELETTRE A, LEFORT P N. A new aerodynamic-traction principle for handling products on an air cushion[J]. IEEE Transactions on Robotics, 2011, 27(2):379-384. [24] KRIJNEN M E, VANOSTAYEN R A J, HOSSEIN N H. The application of fractional order control for an air-based contactless actuation system[J]. ISA Transactions, 2018, 82:172-183. [25] ZHONG Wei, XU Ke, LI Xin, et al. Study on the basic characteristics of a contactless air film conveyor using viscous traction[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2016, 230(9):1139-1148. [26] ZHONG Wei, GU Xiaoyu, XU Ke, et al. Modeling and verification of a contactless air film conveyor using a viscous traction principle[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(12):1763-1772. [27] KANNO M, HARA S, ONISHI M. Characterization of easily controllable plants based on the finite frequency phase/gain property:A magic NUmber 4+22 in H∞ loop shaping design[C]//2007 American Control Conference. July 09-13, 2007, New York, NY, USA. IEEE, 2007:5816-5821. [28] HARA S, KANNO M, ONISHI M. Finite frequency phase property versus achievable control performance in H∞ loop shaping design[C]//2006 SICE-ICASE International Joint Conference. October 18-21, 2006, Busan, Korea(South). IEEE, 2006:3196-3199. [29] MCFARLANE D C, GLOVER K. Robust controller design using normalized coprime factor plant descriptions[M]. Berlin:Springer-Verlag, 1990. |