机械工程学报 ›› 2023, Vol. 59 ›› Issue (13): 89-109.doi: 10.3901/JME.2023.13.089
康杰, 王寅, 罗杰, 孙嘉宝, 曾舒洪
收稿日期:
2022-12-30
修回日期:
2023-04-17
出版日期:
2023-07-05
发布日期:
2023-08-15
通讯作者:
王寅(通信作者),男,1986年出生,教授,博士研究生导师。主要研究方向为无人系统感知与控制,智能计算与自主决策。E-mail:yinwangee@nuaa.edu.cn
作者简介:
康杰,男,1993年出生,讲师,硕士研究生导师。主要研究方向为动力学系统建模与系统辨识。E-mail:kangjie@nuaa.edu.cn;罗杰,男,2000年出生,硕士研究生。主要研究方向为结构工作模态分析。E-mail:luojie114@nuaa.edu.cn;孙嘉宝,男,1999年出生,硕士研究生。主要研究方向为结构工作模态分析。E-mail:sunjiabao@nuaa.edu.cn;曾舒洪,男,1997年出生,硕士研究生。主要研究方向为结构工作模态分析。E-mail:zengshuhong@nuaa.edu.cn
基金资助:
KANG Jie, WANG Yin, LUO Jie, SUN Jiabao, ZENG Shuhong
Received:
2022-12-30
Revised:
2023-04-17
Online:
2023-07-05
Published:
2023-08-15
摘要: 为适应结构健康监测对模态分析高效和自动化的需求,自主工作模态分析(Automated operational modal analysis,AOMA)在近二十年已成为结构动力学领域的研究热点之一。自动鉴别并剔除模态分析结果中的虚假模态,保留结构真实模态,是AOMA的核心和难点。现有AOMA方法可分为三类:①聚类法,核心是基于聚类算法自动挑选稳定图中的稳定模态作为真实模态,是目前的主流方法。②峰值提取法,自动挑选由真实模态引起的响应功率谱密度函数曲线或其奇异值曲线的峰值。③深度学习法,利用神经网络将工作模态分析问题转化为图像目标检测或时序分析问题。重点分析了三类方法的核心思想、分析流程及各自的特点,介绍了AOMA方法在工业软件及工程结构中的应用案例,最后阐明AOMA应用中应注意的问题及发展趋势。
中图分类号:
康杰, 王寅, 罗杰, 孙嘉宝, 曾舒洪. 自主工作模态分析方法研究综述[J]. 机械工程学报, 2023, 59(13): 89-109.
KANG Jie, WANG Yin, LUO Jie, SUN Jiabao, ZENG Shuhong. Automated Operational Modal Analysis Method:A Survey[J]. Journal of Mechanical Engineering, 2023, 59(13): 89-109.
[1] 房芳,郑辉,汪玉,等. 机械结构健康监测综述[J]. 机械工程学报,2021,57(16):269-292. FANG Fang,ZHENG Hui,WANG Yu,et al. Mechanical structural health monitoring:A review[J]. Journal of Mechanical Engineering,2021,57(16):269-292. [2] FAN W,QIAO P. Vibration-based damage identification methods:A review and comparative study[J]. Structural Health Monitoring,2011,10(1):83-111. [3] FARRAR C R,WORDEN K,DERAEMAEKER A. New trends in vibration based structural health monitoring[M]. New York:Springer-Verlag Wien,2012. [4] 刘宇飞,辛克贵,樊健生,等. 环境激励下结构模态参数识别方法综述[J]. 工程力学,2014,31(4):46-53. LIU Yufei,XIN Kegui,FAN Jiansheng,et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics,2014,31(4):46-53. [5] 吕娟霞,蔡国平,彭福军,等. 薄膜天线结构模态参数的在轨辨识[J]. 振动与冲击,2018,37(6):82-85. LÜ Juanxia,CAI Guoping,PENG Fujun,et al. On-orbit identification of the modal parameters of a membrane antenna system[J]. Journal of Vibration and Shock,2018,37(6):82-85. [6] 于登云,夏人伟,孙国江. 在轨航天器动力学参数辨识技术研究[J]. 中国空间科学技术,2008(1):13-17. YU Dengyun,XIA Renwei,SUN Guojiang. Investigation of dynamic parameter identification of on-orbit spacecraft[J]. Chinese Space Science and Technology,2008(1):13-17. [7] 赵发刚,周徐斌,申军烽,等. 航天器在轨模态辨识技术的探讨[C]//2011 国际功能制造与机械动力学会议暨中国振动工程学会机械动力学学会成立30 周年庆祝会议论文集,2011,杭州. ZHAO Fagang,ZHOU Xubin,SHEN Junfeng,et al. Discussion on the on-orbit modal identification technique for spacecraft[C]//International Conference on Functional Manufacturing and Mechanical Dynamics,2011,Hangzhou. [8] CIVERA M,MUGNAINI V,FRAGONARA L Z. Machine learning-based automatic operational modal analysis:A structural health monitoring application to masonry arch bridges[J]. Structural Control and Health Monitoring,2022,29:e3028. [9] BHOWMIK B,TRIPURA T,HAZRA B,et al. Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection[J]. Journal of Sound and Vibration,2020,468:115101. [10] SEO J,HU J W,LEE J. Summary review of structural health monitoring applications for highway bridges[J]. Journal of Performance of Constructed Facilities,2016,30(1):04015072. [11] 胡卫华,唐德徽,李俊燕,等. 基于分布式同步采集的赛格大厦结构动力学参数识别[J]. 建筑结构学报,2022,43(10):76-84. HU Weihua,TANG Dehui,LI Junyan,et al. Structural dynamic parameter identification of Saige building based on distributed synchronous acquisition method[J]. Journal of Building Structures,2022,43(10):76-84. [12] 胡笳,李晗,杨晖柱,等. 上海中心大厦结构健康监测软件集成设计及应用[J]. 同济大学学报,2014,42(3):460-467. HU Jia,LI Han,YANG Huizhu,et al. Integrated design and application of structural health monitoring software system of Shanghai Tower[J]. Journal of Tongji University,2014,42(3):460-467. [13] LAU J,LANSLOTS J,PEETERS B,et al. Automatic modal analysis:reality or myth?[C]//International Modal Analysis Conference,Orlando,USA,2007. [14] CHARBONNEL P-É. Fuzzy-driven strategy for fully automated modal analysis:Application to the SMART2013 shaking-table test campaign[J]. Mechanical Systems and Signal Processing,2021,152:107388. [15] REYNDERS E,HOUBRECHTS J,ROECK G D. Fully automated (operational) modal analysis[J]. Mechanical Systems and Signal Processing,2012,29:228-250. [16] CARDOSOA R,CURYB A,BARBOSA F. A clustering-based strategy for automated structural modal identification[J]. Structural Health Monitoring,2017,17(2):201-217. [17] NEU E,JANSER F,KHATIBI A A,et al. Fully automated operational modal analysis using multi-stage clustering[J]. Mechanical Systems and Signal Processing,2017,84(Part A):308-323. [18] TRONCI E M,ANGELIS M D,BETTI R,et al. Semi-automated operational modal analysis methodology to optimize modal parameter estimation[J]. Journal of Optimization Theory and Applications,2020,187(3):842-854. [19] JELICIC G,SCHWOCHOW J,GOVERS Y,et al. Online monitoring of aircraft modal parameters during flight test based on permanent output-only modal analysis[C]//58th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Grapevine,Texas,2017. [20] ZHANG Y,KURATA M,LYNCH J P. Long-term modal analysis of wireless structural monitoring data from a suspension bridge under varying environmental and operational conditions:system design and automated modal analysis[J]. Journal of Engineering Mechanics,2017,143(4):04016124. [21] RAINIERI C,MAGALHAES F,UBERTINI F. Automated operational modal analysis and Its applications in structural health monitoring[J]. Shock and Vibration,2019,2019:5497065. [22] SADEQI A,ESFANDIARI A,RASHVAND M. Automated operational modal analysis based on long-term records:A case study of Milad Tower structural health monitoring[J]. Structural Control and Health Monitoring,2021,29:e3037. [23] 周志华. 机器学习[M]. 北京:清华大学出版社,2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press,2016. [24] SCIONTI M,LANSLOTS J P. Stabilisation diagrams:Pole identification using fuzzy clustering techniques[J]. Advances in Engineering Software,2005,36(11-12):768-779. [25] TRONCI E M,ANGELIS M D,BETTI R,et al. Multi-stage semi-automated methodology for modal parameters estimation adopting parametric system identification algorithms[J]. Mechanical Systems and Signal Processing,2022,165:108317. [26] GOODFELLOW I,BENGIO Y,COURVILLE A. Deep learning[M]. Cambridge,MA:MIT press,2016. [27] HAN J,JENTZEN A,E Weinan. Solving high-dimensional partial differential equations using deep learning[C]//Proceedings of the National Academy of Sciences,2018,115(34):8505-8510. [28] 汤卓超,傅卓佳. 基于物理信息的神经网络求解曲面上对流扩散方程[J/OL]. 计算力学学报,2022,https://kns.cnki.net/kcms/detail/21.1373.o3.20220728.1148.012.html. TANG Zhuochao,FU Zhuojia. Physics-informed neural networks for solving convection-diffusion equations on surfaces[J/OL]. Chinese Journal of Computational Mechanics,2022,https://kns.cnki.net/kcms/detail/21.1373.o3.20220728.1148.012.html. [29] LJUNG L,ANDERSSON C,TIELS K,et al. Deep learning and system identification[J]. IFAC-Papers OnLine,2020,53(2):1175-1181. [30] 李守巨. 深度学习神经网络在力学模型参数估计中的应用研究进展[J]. 人工智能与机器人研究,2020,9(2):100-109. LI Shouju. Some developments of estimation procedures of mechanical model parameter based on deep learning neural network[J]. Artificial Intelligence and Robotics Research,2020,9(2):100-109. [31] 杜其通,刘朝雨,闵剑,等. 基于人工神经网络的动力学参数辨识法[J]. 高技术通讯,2020,30(5):495-500. DU Qitong,LIU Chaoyu,MIN Jian,et al. Dynamic parameter identification method based on artificial neural network[J]. Chinese High Technology Letters,2020,30(5):495-500. [32] LIM T W,CABELL R H,SILCOX R J. On-line identification of modal parameters using artificial neural networks[J]. Journal of Vibration and Acoustics,1996,118(4):649-656. [33] SU Liang,ZHANG Jingquan,HUANG Xin,et al. Automatic operational modal analysis of structures based on image recognition of stabilization diagrams with uncertainty quantification[J]. Multidimensional Systems and Signal Processing,2021,32(1):335-357. [34] YUE Zhengjiang,LIU Li. A single-mode recursive validation method for modal identification of linear time-varying structures based on prior knowledge[J]. Structural Control and Health Monitoring,2021,28:e2845. [35] 宋明亮,苏亮,董石麟,等. 模态参数自动识别的虚假模态剔除方法综述[J]. 振动与冲击,2017,36(13):1-10. SONG Mingliang,SU Liang,DONG Shilin,et al. Summary of methods eliminating spurious modes in automatic modal parametric identification[J]. Journal of Vibration and Shock,2017,36(13):1-10. [36] PASTOR M,BINDA M,HARČARIK T. Modal assurance criterion[C]//5th International Conference on Modelling of Mechanical and Mechatronics Systems,Slovakia,2012. [37] ALLEMANG R J,BROWN D L,PHILLIPS A W. Survey of modal techniques applicable to autonomous/semi-autonomous parameter identification[C]//International Conference on Noise and Vibration Engineering (ISMA)/Conference of USD,Leuven,Belgium,2010. [38] YAGHOUBI V,VAKILZADEH M K,ABRAHAMSSON T J S. Automated modal parameter estimation using correlation analysis and bootstrap sampling[J]. Mechanical Systems and Signal Processing,2018,100:289-310. [39] JUANG J-N,PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. Journal of Guidance,Control,and Dynamics,1985,8(5):620-627. [40] REYNDERS E,PINTELON R,ROECK G D. Uncertainty bounds on modal parameters obtained from stochastic subspace identification[J]. Mechanical Systems and Signal Processing,2008,22(4):948-969. [41] MCNEILL S I,ZIMMERMAN D C. Blind modal identification applied to output-only building vibration[C]//Proceedings of the IMAC-XXVIII,2010,Florida,USA. [42] VERBOVEN P,PARLOO E,GUILLAUME P,et al. Autonomous structural health monitoring-part I:modal parameter estimation and tracking[J]. Mechanical Systems and Signal Processing,2002,16(4):637-657. [43] REYNDERS E. Uncertainty quantification in data-driven stochastic subspace identification[J]. Mechanical Systems and Signal Processing,2021,151:107338. [44] DÖHLER M,LAM X-B,MEVEL L. Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements[J]. Mechanical Systems and Signal Processing,2013,36(2):562-581. [45] PINTELON R,GUILLAUME P,SCHOUKENS J. Uncertainty calculation in (operational) modal analysis[J]. Mechanical Systems and Signal Processing,2007,21(6):2359-2373. [46] 颜王吉,曹诗泽,任伟新. 结构系统识别不确定性分析的Bayes方法及其进展[J]. 应用数学和力学,2017,38(1):44-59. YAN Wangji,CAO Shize,REN Weixin. Uncertainty quantification for system identification utilizing the bayesian theory and its recent advances[J]. Applied Mathematics and Mechanics,2017,38(1):44-59. [47] CHEEMA P,ALAMDARI M M,VIO G A,et al. Infinite mixture models for operational modal analysis:An automated and principled approach[J]. Journal of Sound and Vibration,2021,491:115757. [48] GOETHALS I,VANLUYTEN B,MOOR B D. Reliable spurious mode rejection using self learning algorithms[C]//The International Conference on Noise and Vibration Engineering,Leuven,Belgium,2004. [49] ZINI G,BETTI M,BARTOLI G. A quality-based automated procedure for operational modal analysis[J]. Mechanical Systems and Signal Processing,2022,164:108173. [50] MAGALHÃES F,CUNHA Á,CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing,2009,23(2):316-329. [51] UBERTINI F,GENTILE C,MATERAZZI A L. Automated modal identification in operational conditions and its application to bridges[J]. Engineering Structures,2013,46:264-278. [52] 汤宝平,章国稳,陈卓. 基于谱系聚类的随机子空间模态参数自动识别[J]. 振动与冲击,2012,31(10):92-96. TANG Baoping,ZHANG Guowen,CHEN Zhuo. Automatic stochastic subspace identification of modal parameters based on hierarchical clustering method[J]. Journal of Vibration and Shock,2012,31(10):92-96. [53] CABBOI A,MAGALHÃES F,GENTILE C,et al. Automated modal identification and tracking:Application to an iron arch bridge[J]. Structural Control and Health Monitoring,2017,24:e1854. [54] RAINIERI C,FABBROCINO G. Automated output-only dynamic identification of civil engineering structures[J]. Mechanical Systems and Signal Processing,2010,24(3):678-695. [55] ZHANG Guowen,MA Jinghua,CHEN Zhuo,et al. Automated eigensystem realisation algorithm for operational modal analysis[J]. Journal of Sound and Vibration,2014,333(15):3550-3563. [56] 黄佩丽. 环境因素影响下的结构模态参数自动精准识别与结构健康状态诊断研究[D]. 广州:广州大学,2022. HUANG Peili. Automatic and accurate identification of structural modal parameters and diagnosis of health condition under ambient influence[D]. Guangzhou:Guangzhou University,2022. [57] ALLEMANG R J,PHILLIPS A W. Integrating multiple algorithms in autonomous modal parameter estimation[C]//Topics in Modal Analysis II,Volume 8:Proceedings of the 32nd IMAC,A Conference and Exposition on Structural Dynamics,2014. Springer International Publishing,2014:1-9. [58] PAN Chudong,YE Xijun,MEI Liu. Improved automatic operational modal analysis method and application to large-scale bridges[J]. Journal of Bridge Engineering,2021,26(8):04021051. [59] RAINIERI C,FABBROCINO G. Influence of model order and number of block rows on accuracy and precision of modal parameter estimates in stochastic subspace identification[J]. International Journal of Lifecycle Performance Engineering,2014,1(4):317-334. [60] PRIORI C,ANGELIS M D,BETTI R. On the selection of user-defined parameters in data-driven stochastic subspace identification[J]. Mechanical Systems and Signal Processing,2018,100:201-523. [61] HEYLEN E,LAMMENS S,SAS P. Modal analysis theory and testing[M]. Leuven,Belgium:Katholieke Universiteit Leuven,1997. [62] MARRONGELLI G,MAGALHãES F,CUNHA Á. Automated operational modal analysis of an arch bridge considering the influence of the parametric methods inputs[C]//10th International Conference on Structural Dynamics,Rome,Italy,2017. [63] RAINIERI C,FABBROCINO G. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation[J]. Mechanical Systems and Signal Processing,2015,60-61:512-534. [64] 贺敏,梁鹏,李琳国,等. 基于两阶段改进的FCM法的模态参数自动识别[J]. 东南大学学报,2019,49(5):940-948. HE Min,LIANG Peng,LI Linguo,et al. Automatic modal parameter identification based on improved two-stage FCM algorithm[J]. Journal of Southeast University,2019,49(5):940-948. [65] HE Min,LIANG Peng,LI Jun,et al. Fully automated precise operational modal identification[J]. Engineering Structures,2021,234:111988. [66] 梁鹏,贺敏,张阳,等. 实时在线桥梁模态参数自动识别[J]. 振动、测试与诊断,2021,41(1):76-84. LIANG Peng,HE Min,ZHANG Yang,et al. Real-time online automatic bridge modal identification[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(1):76-84. [67] 郑沛娟,林迪南,宗周红,等. 基于图论聚类的随机子空间模态参数自动识别[J]. 东南大学学报,2017,47(4):710-716. ZHENG Peijuan,LIN Dinan,ZONG Zhouhong.,et al. Automatic stochastic subspace identification of modal parameters based on graph clustering[J]. Journal of Southeast University,2017,47(4):710-716. [68] BOROSCHEK R L,BILBAO J A. Interpretation of stabilization diagrams using density-based clustering algorithm[J]. Engineering Structures,2019,178:245-257. [69] ANKERST M,BREUNIG M M,KRIEGEL H-P,et al. OPTICS:ordering points to identify the clustering structure[J]. ACM Sigmod Record,1999,28(2):49-60. [70] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [71] 徐帆. 基于密度聚类的结构模态参数自动识别[D]. 哈尔滨:哈尔滨工业大学,2020. XU Fan. Automatic identification of structural modal parameters based on density clustering[D]. Harbin:Harbin Institute of Technology,2020. [72] SCIONTI M,LANSLOTS J,GOETHALS I,et al. Tools to improve detection of structural changes from in-flight flutter data[C]//The Eighth International Conference on Recent Advances in Structural Dynamics,Southampton,England,2003. [73] BAKIR P G. Automation of the stabilization diagrams for subspace based system identification[J]. Expert Systems with Applications,2011,38(12):14390-14397. [74] BROWN D L,ALLEMANG R J,PHILLIPS A W. Autonomous modal parameter estimation:Application examples[C]//Modal Analysis Topics,Volume 3:Proceedings of the 29th IMAC,A Conference on Structural Dynamics,2011. Springer New York,2011:403-428. [75] MOSTAFAEI H,GHAMAMI M,AGHABOZORGI P. Modal identification of concrete arch dam by fully automated operational modal identification[J]. Structures,2021,32:228-236. [76] CARDOSOA R,CURYB A,BARBOSA F. A robust methodology for modal parameters estimation applied to SHM[J]. Mechanical Systems and Signal Processing,2017,95:24-41. [77] 祝青鑫,王浩,茅建校,等. 基于聚类分析的桥梁结构模态参数自动识别方法[J]. 东南大学学报,2020,50(5):837-843. ZHU Qingxin,WANG Hao,MAO Jianxiao,et al. Automated modal parameter identification method for bridges based on cluster analysis[J]. Journal of Southeast University,2020,50(5):837-843. [78] BRINCKER R,ANDERSEN P,JACOBSEN N-J. Automated frequency domain decomposition for operational modal analysis[C]//Conference Proceedings:IMAC-XXIV:A Conference & Exposition on Structural Dynamics,Orlando,Florida,2007. [79] RAINIERI C,FABBROCINO G,COSENZA E. Automated operational modal analysis as structural health monitoring tool:theoretical and applicative aspects[J]. Key Engineering Materials,2007,347:479-484. [80] JIN S-S,JEONG S,SIM S-H,et al. Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges[J]. Automation in Construction,2021,126:103628. [81] CHEN Zhiwei,LIU Kuiming,YAN Wangji,et al. Two-stage automated operational modal analysis based on power spectrum density transmissibility and support-vector machines[J]. International Journal of Structural Stability and Dynamics,2021,21(5):2150068. [82] 宋明亮. 环境激励下结构模态参数自动识别研究[D]. 杭州:浙江大学,2017. SONG Mingliang. Automated identification of modal parameters under ambient excitaiton[D]. Hangzhou:Zhejiang University,2017. [83] 苏亮,宋明亮,董石麟. 基于卷积神经网络的稳定图自动分析方法[J]. 振动与冲击,2018,37(18):59-66. SU Liang,SONG Mingliang,DONG Shilin. Automatic analysis of stabilization diagrams using a convolutional neural network[J]. Journal of Vibration and Shock,2018,37(18):59-66. [84] SU Liang,HUANG Xin,SONG Mingliang,et al. Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network[J]. Structures,2020,28:369-379. [85] KIM H,SIM S H. Automated peak picking using region-based convolutional neural network for operational modal analysis[J]. Structural Control and Health Monitoring,2019,26:e2436. [86] 马庆港. 基于卷积神经网络的时变结构模态参数自动辨识研究[D]. 北京:北京理工大学,2022. MA Qinggang. Research on automatic operational modal parameter identification based on convolutional neural network[D]. Beijing:Beijing Institute of Technology,2022. [87] YANG R,SINGH S K,TAVAKKOLI M,et al. CNN-LSTM deep learning architecture for computer vision-based modal frequency detection[J]. Mechanical Systems and Signal Processing,2020,144:106885. [88] HUANG C S,HUNG S L,WEN C M,et al. A neural network approach for structural identification and diagnosis of a building from seismic response data[J]. Earthquake Engineering and Structural Dynamics,2003,32(2):187-206. [89] FEI Minrui,ZHANG Jian,HU H,et al. A novel linear recurrent neural network for multivariable system identification[J]. Transactions of the Institute of Measurement and Control,2006,28(3):229-242. [90] FACCHINI L,BETTI M,BIAGINI P. Neural network based modal identification of structural systems through output-only measurement[J]. Computers and Structures,2014,138:183-194. [91] 岳振江,刘莉,余磊,等. 结合离线知识的时变结构模态参数在线辨识[J]. 航空学报,2019,40(8):222931. YUE Zhenjiang,LIU Li,YU Lei,et al. Online identification of time-varying structural modal parameters combined with offline knowledge[J]. Acta Aeronautica et Astronatica Sinica,2019,40(8):222931. [92] OLIVIERI C,PAULIS F D,ORLANDI A,et al. Estimation of modal parameters for inter-area oscillations analysis by a machine learning approach with offline training[J]. Energies,2020,13(23):6410. [93] DASCOTTE E. Vibration Monitoring of the Hong Kong Stonecutters Bridge[C]//the 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures,Varenna,Italy,2011. [94] CHEYNET E. Operational modal analysis with automated SSI-COV algorithm[EB/OL]. 2021,https://www.mathworks.com/matlabcentral/fileexchange/69030-operational-modal-analysis-with-automated-ssi-cov-algorithm. [95] REYNDERS E,HOUBRECHTS J,ROECK G D. Automated interpretation of stabilization diagrams[C]//Conference Proceedings of the Society for Experimental Mechanics Series 6. 2011. [96] GARCíA-MACíAS E,UBERTINI F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers:A case study of the Sciri Tower in Perugia,Italy[J]. Engineering Structures,2020,215:110615. [97] 秦仙蓉,刘嘉辉,余传强,等. 基于区间摄动和双层模糊聚类的模态参数自动识别[J]. 振动与冲击,2020,39(23):122-128. QIN Xianrong,LIU Jiahui,YU Chuanqiang,et al. Automatic identification of modal parameters based on interval perturbation and double-layer fuzzy clustering[J]. Journal of Vibration and Shock,2020,39(23):122-128. [98] 徐健. 环境激励下桥梁结构模态参数自动化识别方法研究[D]. 重庆:重庆交通大学,2017. XU Jian. The research on automatic identification method of mode parameter for bridge structure under ambient excitation[D]. Chongqing:Chongqing Jiaotong University,2017. [99] DEVRIENDT C,MAGALHãES F,WEIJTJENS W,et al. Structural health monitoring of offshore wind turbines using automated operational modal analysis[J]. Structural Health Monitoring,2014,13(6):644-659. [100] SCHWOCHOW J,JELICIC G. Automatic operational modal analysis for aeroelastic applications[C]//6th International Operational Modal Analysis Conference. Spain,2015. [101] 刘立坤,闫轲. 随机子空间颤振模态参数自动辨识方法研究[J]. 航空科学技术,2020,31(3):53-58. LIU Likun,YAN Ke. Research on automated stochastic subspace flutter modal identification method[J]. Aeronautical Science & Technology,2020,31(3):53-58. [102] MARRONGELLI G,GENTILE C. Development and application of automated OMA algorithms[C]//8th International Operational Modal Analysis Conference. Copenhagen,2019. [103] SANTOS J,CRÉMONA C,SILVEIRA P. Automatic operational modal analysis of complex civil infrastructures[J]. Structural Engineering International,2020,30 (3):365-380. [104] QU Chunxu,YI Tinghua,LI Hongnan,et al. Closely spaced modes identification through modified frequency domain decomposition[J]. Measurement,2018,128:388-392. [105] KAY S,MARPLE L. Sources of and remedies for spectral line splitting in autoregressive spectrum analysis[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing,Washington,DC,USA,1979. [106] WEIJTJENS W,SITTER G D,DEVRIENDT C,et al. Automated operational modal analysis on an offshore wind turbine:Challenges,results and opportunities[C]//6th International Operational Modal Analysis Conference,Gijon,Spain,2015. [107] PRÉVOST M,GODON J C,INNEGRAEVE O. Thrust oscillations in reduced scale solid rocket motors Part I:Experimental investigations[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,Tucson,Arizona,2005. [108] 袁赫. 考虑不确定性因素的运载火箭载荷分析方法研究[D]. 北京:北京理工大学,2019. YUAN He. Study on load analysis method of launch vehicle considering uncertain factors[D]. Beijing:Beijing Institute of Technology,2019. [109] PEARCE D,HIRSCH H G. The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions[C]//Sixth International Conference on Spoken Language Processing,Beijing,China,2000. [110] MOTTE K,WEIJTJENS W,DEVRIENDT C,et al. Operational modal analysis in the presence of harmonic excitations:A review[C]//33rd Conference and Exposition on Balancing Simulation and Testing,Orlando,FL,2015. [111] LU Xiangyu,HE Xudong,CHEN Huaihai,et al. Operational modal parameter identification with colored noise excitation[J]. Chinese Journal of Aeronautics,2020,34(2):288-300. [112] 李星占,董兴建,岳晓斌,等. 振动响应传递率的动力学特性研究及其在工作模态分析中的应用[J]. 振动与冲击,2019,38(9):62-70. LI Xingzhan,DONG Xingjian,YUE Xiaobin,et al. Dynamic characteristics of vibration response transmissibility and its application in operational modal analysis[J]. Journal of Vibration and Shock,2019,38(9):62-70. [113] WEIJTJENS W,SITTER G D,DEVRIENDT C,et al. Automated transmissibility based operational modal analysis for continuous monitoring in the presence of harmonics[C]//9th International Conference on Structural Dynamics,Porto,Portugal,2014. [114] KANG Jie,JU Hehua,LIU Li. Comparison of response transmissibility and power spectral density transmissibility on operational modal analysis[J]. Mechanical Systems and Signal Processing,2021,160:107912. [115] KANG Jie. Operational modal analysis method by combining power spectral density transmissibility functions under different load cases[J]. Mechanical Systems and Signal Processing,2022,180:109433. [116] 赵威,黄友仙,韦冰峰. 导弹出水过程动力学参数辨识方法研究[J]. 强度与环境,2012,39(1):18-21. ZHAO Wei,HUANG Youxian,WEI Bingfeng. Research on identification of dynamics parameters of water exit of the missile[J]. Structure & Environment Engineering,2012,39(1):18-21. [117] BARTKOWICZ T J,JAMES G H. Ares I-X in-flight modal identification[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Denver,Colorado,2011. [118] 樊会涛. X-2导弹模态试验及分析[J]. 战术导弹技术,1992 (2):13-19. FAN Huitao. Modal test and analysis of X-2 missile[J]. Tactical Missile Technology,1992 (2):13-19. [119] WILF H S. Algorithms and complexity (2nd edition)[M]. Natick,MA,USA:A K Peters/CRC Press,2020. [120] VASUDEVAN V,M.RAMAKRISHNA. A hierarchical singular value decomposition algorithm for low rank matrices[EB/OL]. 2017,https://arxiv.org/abs/1710.02812. [121] PAN V Y,CHEN Z Q. The complexity of the matrix eigenproblem[C]//Proceedings of the Thirty-first Annual ACM Symposium on Theory of computing. Atlanta,USA,1999. [122] KANG Jie,ZENG Shuhong. Uncertainty quantification in operational modal analysis of time-varying structures based on time-dependent autoregressive moving average model[J]. Journal of Sound and Vibration,2023,548:117549. [123] FIRDAUS S,UDDIN M A. A survey on clustering algorithms and complexity analysis[J]. International Journal of Computer Science Issues,2015,12(2):62-85. |
[1] | 李春凯, 王嘉昕, 石玗, 代悦. GTAW熔池激光条纹动态行为与熔透预测方法研究[J]. 机械工程学报, 2024, 60(6): 236-244. |
[2] | 赵德望, 姜超, 赵延广, 杨文平, 樊俊铃. 铝锂合金疲劳性能及预测研究-基于试验和“浅层”+“深度”混合神经网络方法[J]. 机械工程学报, 2024, 60(16): 190-199. |
[3] | 付玲, 佘玲娟, 颜镀镭, 张鹏, 龙湘云. 基于内嵌物理信息与注意力机制BiLSTM神经网络的臂架系统疲劳损伤预测模型[J]. 机械工程学报, 2024, 60(13): 205-215. |
[4] | 陈钱, 陈康康, 董兴建, 皇甫一樊, 彭志科, 孟光. 一种面向机械设备故障诊断的可解释卷积神经网络[J]. 机械工程学报, 2024, 60(12): 65-76. |
[5] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
[6] | 赖旭伟, 丁昆, 张楷, 黄锋飞, 郑庆, 李致萱, 丁国富. 基于可解释物理引导空间注意力改进的跨工艺参数立铣刀磨损辨识[J]. 机械工程学报, 2024, 60(12): 147-157. |
[7] | 林昕, 毛杨坤, 傅盈西, 朱锟鹏. 基于图像语义分割与图卷积的选区激光熔融成形过程羽流运动特征分析[J]. 机械工程学报, 2024, 60(12): 168-182. |
[8] | 邵海东, 肖一鸣, 邓乾旺, 任颖莹, 韩特. 基于不确定性感知网络的可信机械故障诊断[J]. 机械工程学报, 2024, 60(12): 194-206. |
[9] | 李玖法, 邹博文, 任玥. 考虑车-路交互作用的车辆轨迹预测算法研究[J]. 机械工程学报, 2024, 60(10): 76-85. |
[10] | 许思远, 张卫东, 毛玉明, 牛斌. 数据驱动的指定变形非均质多胞结构优化设计[J]. 机械工程学报, 2024, 60(1): 85-95. |
[11] | 崔佳斌, 李聪波, 曹华军, 陈行政, 王军见, 戴涛. 基于SOM-Kmeans的机床能效等级评价方法[J]. 机械工程学报, 2023, 59(7): 295-306. |
[12] | 何赟泽, 李响, 王洪金, 侯岳骏, 张帆, 牟欣颖, 刘浩, 程豪, 李时华, 李杰. 基于可见光和热成像的风机叶片全周期无损检测综述[J]. 机械工程学报, 2023, 59(6): 32-45. |
[13] | 薛红涛, 吴蒙, 张子鸣, 周宏月, 王华庆. 基于K-AHNs的轮毂电机状态识别方法研究[J]. 机械工程学报, 2023, 59(22): 207-214. |
[14] | 刘娟, 刘检华, 庄存波, 徐磊, 翟思宽, 高庆霖. 基于特征聚类的结构件数控加工工时预测方法[J]. 机械工程学报, 2023, 59(15): 232-246. |
[15] | 王一棠, 庞勇, 张立勇, 史彦军, 孙伟, 宋学官. 面向盾构机不完整数据的模糊聚类与非线性回归填补[J]. 机械工程学报, 2023, 59(12): 28-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||