机械工程学报 ›› 2023, Vol. 59 ›› Issue (4): 80-95.doi: 10.3901/JME.2023.04.080
周剑飞1, 郭子琦1, 许述财2, 宋家锋1, 邹猛1
收稿日期:
2022-04-16
修回日期:
2022-10-08
出版日期:
2023-02-20
发布日期:
2023-04-24
通讯作者:
邹猛(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为结构耐撞性仿生设计、车辆地面系统力学。E-mail:zoumeng@jlu.edu.cn
作者简介:
周剑飞,男,1996年出生,博士研究生。主要研究方向为结构耐撞性及轻量化仿生设计。E-mail:zjf18@mails.jlu.edu.cn
基金资助:
ZHOU Jianfei1, GUO Ziqi1, XU Shucai2, SONG Jiafeng1, ZOU Meng1
Received:
2022-04-16
Revised:
2022-10-08
Online:
2023-02-20
Published:
2023-04-24
摘要: 在长期进化过程中,自然界中的多种动物、植物形成了独特的轻质、高强结构,以此来抵抗外界的复杂冲击载荷,保护自身完整,满足生存需要。生物轻质高强结构的优越性,启发了科研和工程人员采用结构仿生学的方法来对管状和板状两大类吸能结构进行设计优化和改进。对竹子、茎秆/树干、羽轴、骨骼四类管状生物结构和甲虫鞘翅、贝壳、柚子皮、龟壳四类板状生物结构进行综述,阐述了分层、多孔、螺旋、中空等多种结构与轻质高强特性之间的关系。在此基础上,对比和分析了相应的结构元素在单胞管、多胞管、嵌套管、波纹管等管状吸能结构和蜂窝夹芯板、复合材料板、混合结构板等板状吸能机构中起到的作用。进一步对当前仿生吸能领域存在的结构复杂、质量大、缺乏普适性的机理和过渡“桥梁”等问题做出了分析;最后对仿生吸能技术的形式简单化、结构轻量化、理论通用化、“形神兼备”化发展趋势做出展望。
中图分类号:
周剑飞, 郭子琦, 许述财, 宋家锋, 邹猛. 生物轻质高强结构及其在吸能结构中的仿生应用[J]. 机械工程学报, 2023, 59(4): 80-95.
ZHOU Jianfei, GUO Ziqi, XU Shucai, SONG Jiafeng, ZOU Meng. Bio-lightweight and High Strength Structures and Their Bionic Applications in Energy Absorption Structures[J]. Journal of Mechanical Engineering, 2023, 59(4): 80-95.
[1] MEYERS M A,CHEN P Y,LIN A Y M,et al. Biological materials:Structure and mechanical properties[J]. Progress in Materials Science,2008,53(1):1-206. [2] LONG L,WANG Z,CHEN K. Analysis of the hollow structure with functionally gradient materials of moso bamboo[J]. Journal of Wood Science,2015,61(6):569-577. [3] TAN T,RAHBAR N,ALLAMEH S M,et al. Mechanical properties of functionally graded hierarchical bamboo structures[J]. Acta Biomaterialia,2011,7(10):3796-3803. [4] FISCHER S F,THIELEN M,LOPRANG R R,et al. Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties[J]. Advanced Engineering Materials,2010,12(12):658-663. [5] 庄蔚敏,刘洋,刘西洋. 碳纤维增强环氧树脂基复合材料圆管轴向压溃分层失效仿真[J]. 机械工程学报,2020,56(12):107-115. ZHUANG Weimin,LIU Yang,LIU Xiyang. Simulation on delamination failure of carbon fiber reinforced epoxy resin composite circular tube under axial crushing[J]. Journal of Mechanical Engineering,2020,56(12):107-115. [6] TRAN T. Crushing analysis under multiple impact loading cases for multi-cell triangular tubes[J]. Thin-Walled Structures,2017,113:262-272. [7] OTHMAN A,ABDULLAH S,ARIFFIN A,et al. Investigating the crushing behavior of quasi-static oblique loading on polymeric foam filled pultruded composite square tubes[J]. Composites Part B:Engineering,2016,95:493-514. [8] ALKHATIB S E,TARLOCHAN F,EYVAZIAN A. Collapse behavior of thin-walled corrugated tapered tubes[J]. Engineering Structures,2017,150:674-692. [9] TANG Z,LIU S,ZHANG Z. Energy absorption properties of non-convex multi-corner thin-walled columns[J]. Thin-Walled Structures,2012,51:112-120. [10] BAROUTAJI A,GILCHRIST M,OLABI A G. Quasi-static,impact and energy absorption of internally nested tubes subjected to lateral loading[J]. Thin-Walled Structures,2016,98:337-350. [11] RAHI A. Controlling energy absorption capacity of combined bitubular tubes under axial loading[J]. Thin-Walled Structures,2018,123:222-231. [12] GUNES R,ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials,2016,18(1):95-112. [13] 柏龙,熊飞,陈晓红,等. SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报,2018,54(5):156-165. BAI Long,XIONG Fei,CHEN Xiaohong,et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM[J]. Journal of Mechanical Engineering,2018,54(5):156-165. [14] CALISKAN U,APALAK M K. Low velocity bending impact behavior of foam core sandwich beams:Experimental[J]. Composites Part B:Engineering,2017,112:158-175. [15] ZHANG C,CHENG Y,ZHANG P,et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading[J]. Engineering Structures,2017,151:459-471. [16] RAVANDI M,TEO W,TRAN L,et al. Low velocity impact performance of stitched flax/epoxy composite laminates[J]. Composites Part B:Engineering,2017,117:89-100. [17] 杨星,于野,张伟,等. 基于三维多胞结构的汽车吸能盒优化设计[J]. 大连理工大学学报,2017,57(4):331-336. YANG Xing,YU Ye,ZHANG Wei,et al. Optimization design of automobile crash box based on 3D cellular structure[J]. Journal of Dalian University of Technology,2017,57(4):331-336. [18] SADJAD P,MOHAMMAD-HOSSEIN E,SOBHAN E M. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads[J]. Journal of Central South University,2018,25(3):632-645. [19] 聂冰冰,周青,夏勇. 行人头部撞击汽车发动机罩盖的多波峰特征与结构设计[J]. 汽车安全与节能学报,2017,8(1):65-71. NIE Bingbing,ZHOU Qing,XIA Yong. Multi-phase impact pulse and structure design for pedestrian headform impact on vehicle hood[J]. Journal of Automotive Safety and Energy,2017,8(1):65-71. [20] AHMED A,WEI L. Introducing CFRP as an alternative material for engine hood to achieve better pedestrian safety using finite element modeling[J]. Thin-Walled Structures,2016,99:97-108. [21] 尹群,李舒,王珂. 冲击毁伤载荷作用下新型舰船舱壁结构型式研究[J]. 舰船科学技术,2017,39(6):6-11. YIN Qun,LI Shu,WANG Ke. Research on new ship bulkhead structure under impact damage load[J]. Ship Science and Technology,2017,39(6):6-11. [22] WU L,ZHU X,HOU H,et al. Dynamic response and energy absorption of warship sandwich cabins subjected to shock load[J]. Chinese Journal of Ship Research,2016,11(6):70-96. [23] 王永滨,蒋万松,王磊,等. 载人登月舱月面着陆缓冲装置设计与研制[J]. 深空探测学报,2016,3(3):262-267. WANG Yongbin,JIANG Wansong,WANG Lei,et al. Design and development of landing gear technology for manned Lunar landing[J]. Journal of Deep Space Exploration,2016,3(3):262-267. [24] YUE S,NIE H,ZHANG M,et al. Optimization and performance analysis of oleo-honeycomb damper used in vertical landing reusable launch vehicle[J]. Journal of Aerospace Engineering,2018,31(2):04018002. [25] MA J,CHEN W,ZHAO L,et al. Elastic buckling of bionic cylindrical shells based on bamboo[J]. Journal of Bionic Engineering,2008,5(3):231-238. [26] ZOU M,WEI C,LI J,et al. The energy absorption of bamboo under dynamic axial loading[J]. Thin-Walled Structures,2015,95:255-261. [27] SONG J,XU S,WANG H,et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures,2018,125:76-88. [28] GANGWAR T,SCHILLINGER D. Microimaging-informed continuum micromechanics accurately predicts macroscopic stiffness and strength properties of hierarchical plant culm materials[J]. Mechanics of Materials,2019,130:39-57. [29] OSORIO L,TRUJILLO E,LENS F,et al. In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties[J]. Journal of Reinforced Plastics and Composites,2018,37(17):1099-1113. [30] LIU S,TONG Z,TANG Z,et al. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads[J]. Thin-Walled Structures,2015,88:70-81. [31] ZOU M,XU S,WEI C,et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo[J]. Thin-Walled Structures,2016,101:222-230. [32] CHEN B,ZOU M,LIU G,et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing[J]. International Journal of Impact Engineering,2018,115:48-57. [33] FU J,LIU Q,LIUFU K,et al. Design of bionic-bamboo thin-walled structures for energy absorption[J]. Thin-Walled Structures,2019,135:400-413. [34] PALOMBINI F L,MARIATH J E D A,OLIVEIRA B F D. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo[J]. Thin-Walled Structures,2020,155:106936. [35] YIN H,XIAO Y,WEN G,et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure[J]. Materials & Design,2015,87:825-834. [36] GORIELY A,MOULTON D E,VANDIVER R. Elastic cavitation,tube hollowing,and differential growth in plants and biological tissues[J]. EPL (Europhysics Letters),2010,91(1):18001. [37] JIAO H,ZHANG Y,CHEN W. The lightweight design of low RCS pylon based on structural bionics[J]. Journal of Bionic Engineering,2010,7(2):182-190. [38] KAMINSKI R,SPECK T,SPECK O. Biomimetic 3D printed lightweight constructions:A comparison of profiles with various geometries for efficient material usage inspired by square-shaped plant stems[J]. Bioinspiration & Biomimetics,2019,14(4):046007. [39] SPECK T,BURGERT I. Plant stems:Functional design and mechanics[J]. Annual Review of Materials Research,2011,41:169-193. [40] ZORZETTO L,RUFFONI D. Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance[J]. Advanced Functional Materials,2019,29(1):1805888. [41] GIBSON L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface,2012,9(76):2749-2766. [42] WEGST U G. Bending efficiency through property gradients in bamboo,palm,and wood-based composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(5):744-755. [43] XING Y,JONES P,BOSCH M,et al. Exploring design principles of biological and living building envelopes:What can we learn from plant cell walls?[J]. Intelligent Buildings International,2018,10(2):78-102. [44] XIAO Y,YIN H,FANG H,et al. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading[J]. International Journal of Mechanics and Materials in Design,2016,12(4):563-576. [45] YIN H,XIAO Y,WEN G,et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures[J]. Thin-Walled Structures,2016,109:332-343. [46] JIANG B,TAN W,BU X,et al. Numerical,theoretical,and experimental studies on the energy absorption of the thin-walled structures with bio-inspired constituent element[J]. International Journal of Mechanical Sciences,2019,164:105173. [47] LIU Q,MA J,HE Z,et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B:Engineering,2017,121:134-144. [48] SONG J,XU S,LIU S,et al. Design and numerical study on bionic columns with grooves under lateral impact[J]. Thin-Walled Structures,2020,148:106546. [49] HA N S,LU G,XIANG X. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration[J]. International Journal of Mechanical Sciences,2018,148:409-421. [50] BRUSATTE S L,O'CONNOR J K,JARVIS E D. The origin and diversification of birds[J]. Current Biology,2015,25(19):888-898. [51] FIELD D J,BERCOVICI A,BERV J S,et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction[J]. Current Biology,2018,28(11):1825-1831. [52] LINGHAM-SOLIAR T. Microstructural tissue-engineering in the rachis and barbs of bird feathers[J]. Scientific Reports,2017,7:45162. [53] SULLIVAN T N,WANG B,ESPINOSA H D,et al. Extreme lightweight structures:Avian feathers and bones[J]. Materials Today,2017,20(7):377-391. [54] ZOU M,XU L,ZHOU J,et al. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft[J]. Microscopy Research and Technique,2020,83(2):156-164. [55] AUBER L. Cortex and medulla of bird-feathers[J]. Nature,1955,176(4495):1218-1219. [56] ZOU M,ZHOU J,XU L,et al. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis[J]. Micron,2019,126:102735. [57] LIU Z,JIAO D,MEYERS M A,et al. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder——the peacock's tail coverts shaft and its components[J]. Acta Biomaterialia,2015,17:137-151. [58] WANG B,MEYERS M A. Seagull feather shaft:Correlation between structure and mechanical response[J]. Acta Biomaterialia,2017,48:270-288. [59] WANG B,SULLIVAN T N. A review of terrestrial,aerial and aquatic keratins:The structure and mechanical properties of pangolin scales,feather shafts and baleen plates[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,76:4-20. [60] PURSLOW P,VINCENT J. Mechanical properties of primary feathers from the pigeon[J]. Journal of Experimental Biology,1978,72(1):251-260. [61] BACHMANN T,EMMERLICH J,BAUMGARTNER W,et al. Flexural stiffness of feather shafts:Geometry rules over material properties[J]. Journal of Experimental Biology,2012,215(3):405-415. [62] WANG B,MEYERS M A. Light like a feather:A fibrous natural composite with a shape changing from round to square[J]. Advanced Science (Weinh),2017,4(3):1600360. [63] WEISS I M,KIRCHNER H O. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure,mechanics,and chemistry of the tail feather coverts[J]. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology,2010,313(10):690-703. [64] ALIBARDI L. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers[J]. Anatomical Science International,2010,85(2):79-91. [65] SULLIVAN T N,HUNG T T,VELASCO-HOGAN A,et al. Bioinspired avian feather designs[J]. Material Science and Engineering:C,2019,105:110066. [66] LAUNEY M E,BUEHLER M J,RITCHIE R O. On the mechanistic origins of toughness in bone[J]. Annual Review of Materials Research,2010,40:25-53. [67] LI X,WANG L,FAN Y,et al. Nanostructured scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A,2013,101(8):2424-2435. [68] DUNLOP J W,FRATZL P. Multilevel architectures in natural materials[J]. Scripta Materialia,2013,68(1):8-12. [69] PORTER M M,MCKITTRICK J. It's tough to be strong:Advances[J]. American Ceramic Society Bulletin,2014,93(5):18-24. [70] NIKKHAH H,BAROUTAJI A,KAZANCL Z,et al. Evaluation of crushing and energy absorption characteristics of bio-inspired nested structures[J]. Thin-Walled Structures,2020,148:106615. [71] ZHANG Y,XU X,WANG J,et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load[J]. International Journal of Mechanical Sciences,2018,140:407-431. [72] WANG C,LI Y,ZHAO W,et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure[J]. International Journal of Mechanical Sciences,2018,138:489-501. [73] SUN J,BHUSHAN B. Structure and mechanical properties of beetle wings:A review[J]. Rsc Advances,2012,2(33):12606-12623. [74] CHEN J,XIE J,WU Z,et al. Review of beetle forewing structures and their biomimetic applications in China:(I) On the structural colors and the vertical and horizontal cross-sectional structures[J]. Material Science and Engineering:C,2015,55:605-619. [75] LU Z,GUO C,ZHU C,et al. Multi-functional optimization of sandwich panel with bio-inspired lightweight structure core[C]//4th International Conference of Bionic Engineering. Nanjing,China:International Society of Bionic Engineering,2013:73-80. [76] GUO C,LI D,LU Z,et al. Mechanical properties of a novel,lightweight structure inspired by beetle's elytra[J]. Chinese Science Bulletin,2014,59(26):3341-3347. [77] CHEN J,GU C,GUO S,et al. Integrated honeycomb technology motivated by the structure of beetle forewings[J]. Materials Science and Engineering:C,2012,32(7):1813-1817. [78] ROUX-PERTUS C,OLIVIERO E,VIGUIER V,et al. Multiscale characterization of the hierarchical structure of Dynastes hercules elytra[J]. Micron,2017,101:16-24. [79] CHEN J,WU G. Beetle forewings:Epitome of the optimal design for lightweight composite materials[J]. Carbohydrate Polymers,2013,91(2):659-665. [80] CHEN J,ZHANG X,OKABE Y,et al. The deformation mode and strengthening mechanism of compression in the beetle elytron plate[J]. Materials & Design,2017,131:481-486. [81] CHEN J,ZU Q,WU G,et al. Review of beetle forewing structures and their biomimetic applications in China:(II) On the three-dimensional structure,modeling and imitation[J]. Materials Science and Engineering:C,2015,55:620-633. [82] CHEN J,XIE J,ZHU H,et al. Integrated honeycomb structure of a beetle forewing and its imitation[J]. Materials Science and Engineering:C,2012,32(3):613-618. [83] CHEN J,HE C,GU C,et al. Compressive and flexural properties of biomimetic integrated honeycomb plates[J]. Materials & Design,2014,64:214-220. [84] CHEN J,TUO W,ZHANG X,et al. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates[J]. Materials Science and Engineering:C,2016,69:255-261. [85] ZHANG X,LIU C,CHEN J,et al. The influence mechanism of processing holes on the flexural properties of biomimetic integrated honeycomb plates[J]. Materials Science and Engineering:C,2016,69:798-803. [86] ZHOU M,XIE J,CHEN J,et al. The influence of processing holes on the flexural properties of biomimetic integrated honeycomb plates[J]. Materials & Design,2015,86:404-410. [87] CAI Z,LI Z,DING Y,et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing[J]. Composites Part B:Engineering,2019,161:490-501. [88] HAO P,DU J. Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,79:301-308. [89] XIANG J,DU J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading[J]. Materials Science and Engineering:A,2017,696:283-289. [90] ZHANG L,BAI Z,BAI F. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral,hexagonal and octagonal sections[J]. Thin-Walled Structures,2018, 122:42-51. [91] XIANG J,DU J,LI D,et al. Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra[J]. Journal of Materials Science,2017,52(22):13247-13260. [92] HONG X,WANG X. Structure and roles of the various layers in the shells of conch conus litteratus[J]. Journal of Bionic Engineering,2016,13(1):124-131. [93] BOUFALA K,OUHENIA S,LOUIS G,et al. Microstructure analysis and mechanical properties by instrumented indentation of Charonia Lampas Lampas shell[J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,89:114-121. [94] JI H,LI X,CHEN D. Deformation and fracture behavior of a natural shell ceramic:Coupled effects of shell shape and microstructure[J]. Materials Science and Engineering:C,2018,90:557-567. [95] YANG W,ZHANG G,ZHU X,et al. Structure and mechanical properties of Saxidomus purpuratus biological shells[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(7):1514-1530. [96] BARTHELAT F,TANG H,ZAVATTIERI P,et al. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337. [97] YAO H,DAO M,IMHOLT T,et al. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod[J]. Proceedings of the National Academy of Sciences,2010,107(3):987-992. [98] FLEISCHLI F D,DIETIKER M,BORGIA C,et al. The influence of internal length scales on mechanical properties in natural nanocomposites:A comparative study on inner layers of seashells[J]. Acta Biomaterialia,2008,4(6):1694-1706. [99] ZHANG T,MA Y,CHEN K,et al. Structure and mechanical properties of a pteropod shell consisting of interlocked helical aragonite nanofibers[J]. Angewandte Chemie International Edition,2011,50(44):10361-10365. [100] WILLINGER M G,CHECA A G,BONARSKI J T,et al. Biogenic crystallographically continuous aragonite helices:The microstructure of the planktonic gastropod Cuvierina[J]. Advanced Functional Materials,2016,26(4):553-561. [101] MAYER G. Rigid biological systems as models for synthetic composites[J]. Science,2005,310(5751):1144-1147. [102] CAO X,WANG Y. Optimization of load-carrying and heat-insulating multi-layered thin-walled structures based on bionics using genetic algorithm[J]. Structural and Multidisciplinary Optimization,2015,53(4):813-824. [103] ZHENG X,ZHAO F,ZHANG J. Mechanical properties and fracture behaviour of multilayer alumina composites[J]. Journal of Wuhan University of Technology,2015,30(5):965-967. [104] GHAZLAN A,NGO T D,TRAN P. Three-dimensional Voronoi model of a nacre-mimetic composite structure under impulsive loading[J]. Composite Structures,2016,153:278-296. [105] KO K,JIN S,LEE S E,et al. Bio-inspired bimaterial composites patterned using three-dimensional printing[J]. Composites Part B:Engineering,2019,165:594-603. [106] MORTON J F. Fruits of warm climates[M]. Eugene:Wipf and Stock Publishers,1987. [107] THIELEN M,SPECK T,SEIDEL R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel[J]. Journal of Materials Science,2013,48(9):3469-3478. [108] MEHTA P S,OCAMPO J S,TOVAR A,et al. Bio-inspired design of lightweight and protective structures[R]. SAE 2016-01-0396,2016. [109] BüHRIG-POLACZEK A,FLECK C,SPECK T,et al. Biomimetic cellular metals:Using hierarchical structuring for energy absorption[J]. Bioinspiration & Biomimetics,2016,11(4):045002. [110] THIELEN M,SPECK T,SEIDEL R. Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel:Influence of the hydration state[J]. Royal Society Open Science,2015,2(6):140322. [111] THIELEN M,SCHMITT C N,ECKERT S,et al. Structure-function relationship of the foam-like pomelo peel (Citrus maxima)-an inspiration for the development of biomimetic damping materials with high energy dissipation[J]. Bioinspiration & Biomimetics,2013,8(2):025001. [112] ZHANG W,YIN S,YU T X,et al. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb[J]. International Journal of Impact Engineering,2019,125:163-172. [113] LI T,WANG H,HUANG S,et al. Bioinspired foam composites resembling pomelo peel:Structural design and compressive,bursting and cushioning properties[J]. Composites Part B:Engineering,2019,172:290-298. [114] ACHRAI B,WAGNER H D. Micro-structure and mechanical properties of the turtle carapace as a biological composite shield[J]. Acta Biomaterialia,2013,9(4):5890-5902. [115] GILBERT S F,LOREDO G A,BRUKMAN A,et al. Morphogenesis of the turtle shell:The development of a novel structure in tetrapod evolution[J]. Evolution & Development,2001,3(2):47-58. [116] DAMIENS R,RHEE H,HWANG Y,et al. Compressive behavior of a turtle's shell:Experiment,modeling,and simulation[J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,6:106-112. [117] RHEE H,HORSTEMEYER M F,HWANG Y,et al. A study on the structure and mechanical behavior of the Terrapene carolina carapace:A pathway to design bio-inspired synthetic composites[J]. Materials Science and Engineering:C,2009,29(8):2333-2339. [118] WU Y,LIU Q,FU J,et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering,2017,121:122-133. [119] YU W,ZHU K,AMAN Y,et al. Bio-inspired design of SiCf reinforced multi layered Ti intermetallic composite[J]. Materials & Design,2016,101:102-108. [120] ZHU K,YU W,AMAN Y,et al. Synthesis,microstructure and mechanical properties of a bioinspired Ti intermetallic multi-layered/SiCf-reinforced Ti-matrix hybrid composite[J]. Journal of Materials Science,2016,51(18):8747-8760. [121] ZHANG X,AN C,SHEN Z F,et al. Dynamic crushing responses of bio-inspired re-entrant auxetic honeycombs under in-plane impact loading[J]. Materials Today Communications,2020,23:100918. |
[1] | 杨阳, 王泽奎, 陈晨, 马华, 杨志南, 张福成. Ni和Cu合金化对Fe-Mn-Al-C奥氏体轻质钢微观组织和力学性能的影响[J]. 机械工程学报, 2024, 60(8): 154-164. |
[2] | 王博士, 陈楠楠, 蔡艳, 王敏. 低合金贝氏体高强钢模拟焊接粗晶热影响区低温疲劳韧脆转变行为及机制[J]. 机械工程学报, 2024, 60(6): 271-278. |
[3] | 张会杰, 孔旭亮, 姚恩泽, 马康, 宋建岭. 母材相对位置对航天异种高强铝合金FSW接头组织性能的影响机理[J]. 机械工程学报, 2024, 60(18): 154-162. |
[4] | 刘承尚, 陈锐, 李芳, 王萌, 徐戊矫. 基于改进遗传算法的超高强钢硬化模型参数确定及折弯回弹预测[J]. 机械工程学报, 2024, 60(12): 240-249. |
[5] | 栾晓圣, 梁志强, 赵文祥, 肖世宏, 周天丰, 王西彬, 李宏伟, 刘心藜, 刘珍妮. 超高强度钢热场-超声复合滚压表层微观组织强化机制[J]. 机械工程学报, 2023, 59(4): 34-42. |
[6] | 梁归慧, 谢锋, 韩世伟, 骆文泽, 邓德安. 1 500 MPa级超高强钢复杂薄壁结构焊接变形预测[J]. 机械工程学报, 2023, 59(24): 95-107. |
[7] | 林忠钦, 马运五, 夏裕俊, 李永丰, 李淑慧, 李永兵. 载运工具高性能薄壁承载结构成形及连接工艺研究进展[J]. 机械工程学报, 2023, 59(20): 1-17. |
[8] | 宋燕利, 刘煜键, 方志凌, 王祥, 路珏, 华林, 刘鹏, 严建文. 超高强钢构件热冲压成形技术与应用[J]. 机械工程学报, 2023, 59(20): 154-178. |
[9] | 谢永, 王晓南, 周相, 刘珍光, 姚俊, 杜宝瑞, 鲍成人. 镀锌高强钢电阻点焊焊接接头液态金属脆化裂纹研究进展[J]. 机械工程学报, 2023, 59(2): 39-50. |
[10] | 段永川, 孙莉莉, 张芳芳, 郑学斌, 董睿, 官英平. 高强钢变模量随动强化本构模型匹配与解耦标定策略研究[J]. 机械工程学报, 2023, 59(2): 80-95,103. |
[11] | 李鹤飞, 张鹏, 张哲峰. 高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J]. 机械工程学报, 2023, 59(16): 18-31. |
[12] | 徐怡, 胡馨予, 张学宇, 何祝斌. 超高强钢焊管无回弹补偿冷热复合精密弯曲[J]. 机械工程学报, 2023, 59(13): 353-363. |
[13] | 张骥超, 连昌伟, 韩非. 第三代超高强钢QP1180硬化与失效行为研究[J]. 机械工程学报, 2022, 58(8): 117-125. |
[14] | 解东旋, 庄蔚敏, 王楠, 施宏达, 王鹏跃, 刘洋, 陈延红. 高强度钢板热冲压工艺与装备研究综述[J]. 机械工程学报, 2022, 58(20): 319-338. |
[15] | 宋毅帆, 杨楠. 由折痕构建的扭转-吸能结构的形变与力学行为研究[J]. 机械工程学报, 2022, 58(17): 125-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||