[1] 郑修麟. 材料疲劳理论与工程应用[M]. 北京:科学出版社,2013. ZHENG Xiulin. Material fatigue theory and engineering applications[M]. Beijing:Science Press,2013. [2] 甘磊,吴昊,仲政. 基于能量法的多轴疲劳寿命预测方法[J]. 固体力学学报,2019,40(3):260-268. GAN Lei,WU Hao,ZHONG Zheng. Fatigue life prediction under multiaxial loading using energy-based models[J]. Chinese Journal of Solid Mechanics,2019,40(3):260-268. [3] LU Y,WU H,ZHONG Z. A simple energy-based model for nonproportional low-cycle multiaxial fatigue life prediction under constant-amplitude loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(6):1402-1411. [4] ZHU H,WU H,LU Y,et al. A novel energy-based equivalent damage parameter for multiaxial fatigue life prediction[J]. International Journal of Fatigue,2019,121:1-8. [5] SOCIE D F. Multiaxial fatigue damage models[J]. Journal of Engineering Materials & Technology Transactions of the ASME,1987,109(4):293-298. [6] CHEN X,XU S,HUANG D. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22(8):679-686. [7] GLINKA G,WANG G,PLUMTREE A. Mean stress effects in multiaxial fatigue[J]. Fatigue & fracture of engineering materials & structures,1995,18(7-8):755-764. [8] VARVANI-FARAHANI A. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions[J]. International Journal of Fatigue,2000,22(4):295-305. [9] PAN W,HUNG C,CHEN L. Fatigue life estimation under multiaxial loadings[J]. International Journal of Fatigue,1999,21(1):3-10. [10] NOWELL D,NOWELL P W. A machine learning approach to the prediction of fretting fatigue life[J]. Tribology International,2020,141:1-8. [11] WIDROW B,RUMELHART D E,LEHR M A. Neural networks:Application in industry, business and science[J]. Communication of the ACM,1994,37(3):93-105. [12] GUO S,LI C,SHI J,et al. Effect of quenching media and tempering temperature on fatigue property and fatigue life estimation based on RBF neural network of 0.44% carbon steel[J]. Mechanical Sciences,2019,10(1):273-286. [13] MATHEW M D,KIM D W,RYU W S. A neural network model to predict low cycle fatigue life of nitrogen-alloyed 316L stainless steel[J]. Materials Science and Engineering:A,2008,474(1-2):247-253. [14] GAN L,ZHAO X,WU H,et al. Estimation of remaining fatigue life under two-step loading based on kernel-extreme learning machine[J]. International Journal of Fatigue,2021,148:106190. [15] MOHANTY J R,PARHI D R K,RAY P K,et al. Prediction of residual fatigue life under interspersed mixed-mode (I and II) overloads by Artificial Neural Network[J]. Fatigue & Fracture of Engineering Materials & Structures,2010,32(12):1020-1031. [16] KARAKAS Ö. Estimation of fatigue life for aluminium welded joints with the application of artificial neural networks[J]. Materialwissenschaft und Werkstofftechnik,2011,42(10):888-893. [17] PUJOL J C F,PINTO J M A. A neural network approach to fatigue life prediction[J]. International Journal of Fatigue,2011,33(3):313-322. [18] LI J,LIU J,SUN Q,et al. A modification of Smith-Watson-Topper damage parameter for fatigue life prediction under non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2012,35(4):301-316. [19] NITTA A,OGATA T,KUWABARA K. Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type 304 stainless steel[J]. Fatigue & Fracture of Engineering Materials & Structures,1989(2):77-92. [20] JIANG Y,HERTEL O,VORMWALD M. An experimental evaluation of three critical plane multiaxial fatigue criteria[J]. International Journal of Fatigue,2007,29(8):1490-1502. [21] WANG Y,SUSMEL L. The modified Manson-Coffin curve method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading[J]. International Journal of Fatigue,2016,83(2):135-149. [22] GAO Z,ZHAO T,WANG X,et al. Multiaxial fatigue of 16MnR steel[J]. Journal of Pressure Vessel Technology-transactions of the ASME,2009,131(2):1-9. [23] KALLURI S,BONACUSE P J. In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 superalloy at 760℃[C]//American Society for Testing and Materials. Symposium on Multiaxial Fatigue,October 14-15,1991,SanDiego,California. San Diego:NASA,1991:1-20. [24] SOCIE D F,WAILL L A,DITTMER D F. Biaxial fatigue of Inconel 718 including mean stress effects[C]//ASTM,1985,853:463-481. [25] SOCIE D F,KURATH P,KOCH J. A multiaxial fatigue damage parameter[J]. Biaxial and Multiaxial Fatigue,1989,3:535-550. [26] FATEMI A,SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures,1988,11(3):149-165. [27] LEESE G E,MORROW J. Low cycle fatigue properties of a 1045 steel in torsion[J]. Multiaxial Fatigue,1985,853:482-496. [28] CHEN X,AN K,KIM K S. Low-cycle fatigue of 1Cr-18Ni-9Ti stainless steel and related weld metal under axial, torsional and 90°out-of-phase-loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(6):439-448. [29] SUN G,SHANG D. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis[J]. Materials & Design,2010,31(1):126-133. [30] GARUD Y S. A new approach to the evaluation of fatigue under multiaxial loadings[J]. Journal of Engineering Materials & Technology Transactions of the ASME,1981,103(2):118-125. [31] GAN L,WU H,ZHONG Z. Use of an energy-based/critical plane model to assess fatigue life under low-cycle multiaxial cycles[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(19):2694-2708. [32] ITOH T,SAKANE M,OHNAMI M,et al. Nonproportional low cycle fatigue criterion for type 304 stainless steel[J]. Journal of Engineering Materials and Technology,1995,117(3):285-292. [33] KANAZAWA K,MILLER K J,BROWN M W. Cyclic deformation of 1% Cr-Mo-V steel under out of-phase loads[J]. Fatigue of Engineering Materials and Structures,1979,2(2):217-228. [34] MEGGIOLARO M A,CASTRO J T P. Prediction of non-proportionality factors of multiaxial histories using the moment of inertia method[J]. International Journal of Fatigue,2014,61:151-159. |