[1] 陈进东,徐春雷. 某大型先进压水堆核电机组试验项目完整性分析方法研究[J]. 项目管理技术,2020,18(9):36-39. CHEN Jindong,XU Chunlei. Research on test projects integrity analysis method of a large advanced PWR nuclear power plant[J]. Project Management Technology,2020,18(9):36-39. [2] 文青龙,陈军,卢冬华,等. 严重事故条件下压力容器完整性评价的研究进展[J]. 核科学与工程,2011,31(3):222-229. WEN Qinglong,CHEN Jun,LU Donghua,et al. Research progress on assessment of reactor vessel integrity under severe accident conditions[J]. Chinese Journal of Nuclear Science and Engineering,2011,31(3):222-229. [3] 胡腾,常华健,薛艳芳,等. CAP1400熔融物堆内滞留试验验证研究[J]. 中国核电,2018,11(4):42-46. HU Teng,CHANG Huajian,XUE Yanfang,et al. Experimental studies of the CAP1400 IVR strategy[J]. China Nuclear Power,2018,11(4):42-46. [4] Japan Nuclear Emergency Response Headquarters. Report of Japanese government to the IAEA ministerial conference on nuclear safety-The accident at TEPCO's fukushima nuclear power stations[R]. Toyko:Japan Nuclear Emergency Response Headquarters,2011. [5] 轩福贞,宫建国. 基于损伤模式的压力容器设计原 理[M]. 北京:科学出版社,2020. XUAN Fuzhen,GONG Jianguo. Fundamental and approaches for damage mode-based design of pressure vessels[M]. Beijing:Science Press,2020. [6] 李今朝,陈亮,黄腾飞,等. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报,2019,33(S1):382-385. LI Jinzhao,CHEN Liang,HUANG Tengfei,et al. Research progress on SA-508 Gr.4N pressure vessel steel[J]. Materials Review,2019,33(S1):382-385. [7] 王浩强,赵玲玲,刘凯泉. 热变形条件及热处理参数对SA-508Gr.3钢的影响[J]. 一重技术,2017(5):44-47. WANG Haoqiang,ZHAO Lingling,LIU Kaiquan. Effect of thermal deformation and heat treatment parameters on SA-508Cr.3 steel[J]. CFHI Technology,2017(5):44-47. [8] 吴豪. SA-508Ⅲ锻件工艺性能试验研究[J]. 冶金与材料,2020,40(2):39-40. WU Hao. Experimental study on process properties of SA 508 III[J]. Metallurgy and Materials,2020,40(2):39-40. [9] XIE L J,REN X,SHEN M X,et al. Parameter correlation of high-temperature creep constitutive equation for RPV metallic materials[J]. Journal of Nuclear Materials,2015,465:196-203. [10] LU C Y,HE Y M,GAO Z L,et al. Microstructural evolution and mechanical characterization for the A508-3 steel before and after phase transition[J]. Journal of Nuclear Materials,2017,495:103-110. [11] LU C Y,WU X J,HE Y M,et al. Deformation mechanism-based true-stress creep model for SA508 Gr. 3 steel over the temperature range of 450-750℃[J]. Journal of Nuclear Materials,2019,526:1-10. [12] 张梦园,顾伯勤,陶家辉. 工业纯钛TA2的室温压缩蠕变预测模型[J]. 机械工程材料,2018,42(12):73-76. ZHANG Mengyuan,GU Boqin,TAO Jiahui. Prediction model for room temperature compression creep of commercially pure titanium TA2[J]. Materials for Mechanical Engineering,2018,42(12):73-76. [13] 陈乐,肖红星,梁波,等. AgInCd合金压缩蠕变性能研究[J]. 稀有金属材料与工程,2015,44(11):2788-2792. CHEN Le,XIAO Hongxing,LIANG Bo,et al. Compressive creep behavior of AgIn Cd alloy[J]. Rare Metal Materials and Engineering,2015,44(11):2788-2792. [14] Wereszczak A A,Ferber M K,Kirkland T P,et al. Asymmetric tensile and compressive creep deformation of hot-isostatically-pressed Y2O3-doped-Si3N4[J]. Journal of the European Ceramic Society,1999,19(2):227-237. [15] Zhang Q,Zhang W Z,Liu Y Y. Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109[J]. Materials Science and Engineering:A,2015,628:340-349. [16] Yevgen G. Development of a creep-damage model for non-isothermal long-term strength analysis of high-temperature components operating in a wide stress range[D]. Halle:MLU Halle-Wittenberg,2008. [17] Dobeš F,Hadraba H,Chlup Z,et al. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy[J]. Materials Science and Engineering A,2018,732:99-104. [18] Chawake N,Koundinya N,Srivastav A K,et al. On correlation between densification kinetics during spark plasma sintering and compressive creep of B2 aluminides[J]. Scripta Materialia,2015,107:63-66. [19] Subramanian P R,Parthasarathy T A,Mendiratta M G,et al. Compressive creep behavior of Nb5Si3[J]. Scripta Metallurgica et Materialia,1995,32(8):1227-1232. |