[1] 陈慧琴,曹春晓,郭灵,等. TC11钛合金片层组织热变形球化动力学过程[J]. 航空材料学报,2009,29(1):37-42. CHEN Huiqin,CAO Chunxiao,GUO Ling,et al. Hot deformation globularization kinetic processes of TC11 titanium alloy with lamellar structure[J]. Journal of Aeronautical Materials,2009,29(1):37-42. [2] 李敏娜,吴晨,马保飞,等. 大规格TC11钛合金棒材热处理后组织与性能分布规律性研究[J]. 钛工业进展,2022,39(1):12-15. LI Minna,WU Chen,MA Baofei,et al. Research on distribution regularity of microstructure and properties of large-sized TC11 titanium alloy bar after heat treatment[J]. Titanium Industry Progress,2022,39(1):12-15. [3] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [4] OLIVEIRA J P,SANTOS T G,MIRANDA R M. Revisiting fundamental welding concepts to improve additive manufacturing:From theory to practice[J]. Progress in Materials Science,2020,107:100590. [5] LI Neng,HUANG Shuai,ZHANG Guodong,et al. Progress in additive manufacturing on new materials:A review[J]. Journal of Materials Science & Technology,2019,35:242-269. [6] 秦仁耀,张国栋,李能,等. TiAl基合金的增材制造技术研究进展[J]. 机械工程学报,2021,57(8):115-132. QIN Renyao,ZHANG Guodong,LI Neng,et al. Research progress on additive manufacturing of TiAl-based alloys[J]. Journal of Mechanical Engineering,2021,57(8):115-132. [7] HUANG Shuai,SUN Bingbing,GUO Shaoqing. Microstructure and property evaluation of TA15 titanium alloy fabricated by selective laser melting after heat treatment[J]. Optics & Laser Technology,2021,144:107422. [8] REN Haishui,TIAN Xiangjun,LIU Dong,et al. Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25:1856-1864. [9] ZHU Yanyan,TIAN Xiangjun,LI Jia,et al. The anisotropy of laser melting deposition additive manufacturing Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials and Design,2015,67:538-542. [10] WANG T,ZHU Y Y,ZHANG S Q,et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds,2015,632:505-513. [11] WANG Yafei,CHEN Rui,CHENG Xu,et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology,2019,35:403-408. [12] ZHU Yanyan,LI Jia,TIAN Xiangjun,et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science & Engineering A,2014,607:427-434. [13] 窦恩惠,肖美立,柯林达,等. 热处理对激光选区熔化成形TC11钛合金组织性能的影响[J]. 中国激光,2021,48(6):0602117. DOU Enhui,XIAO Meili,KE Linda,et al. Effect of heat treatment on microstructure and mechanical properties of selective-laser-melted TC11 titanium alloys[J]. Chinese Journal of Lasers,2021,48(6):0602117. [14] ZHANG C C,WEI H L,LIU T T,et al. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion[J]. Journal of Materials Science & Technology,2021,75:174-183. [15] 王宁宁,韩冬,吴军,等. 电子束熔丝增材制造TC11钛合金显微组织及力学性能研究[J]. 航天制造技术,2019(6):36-39. WANG Ningning,HAN Dong,WU Jun,et al. Microstructure and mechanical properties of tc11 titanium alloy electron beam fuse additive manufacturing[J]. Aerospace Manufacturing Technology,2019(6):36-39. [16] DING D,PAN Z,CUI D,et al. Wire-feed additive manufacturing of metal components:Technologies,developments and future interests[J]. International Journal of Advanced Manufacturing Technology,2015,81:465-481. [17] TAMINGER K,HAFLEY R. Electron beam freeform fabrication:A rapid metal deposition process[C]//Proceedings of the 3rd Annual Automotive Composites Conference,2003:9-10. [18] 陈国庆,树西,张秉刚,等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报,2018,39(8):123-128. CHEN Guoqing,SHU Xi,ZHANG Binggang,et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution,2018,39(8):123-128. [19] SABBAN R,BAHL S,CHATTERJEE K,et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness[J]. Acta Materialia,2019,162:239-254. [20] GALARRAGA H,WARREN R,LADOS D,et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Materials Science and Engineering A,2017,685:417-428. [21] ZHANG Guodong,XIONG Huaping,YU Huai,et al. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments[J]. Materials and Design,2020,195,109063. [22] ANTONYSAMY A A,MEYER J,PRANGNELL P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting[J]. Materials Characterization, 2013,84:153-168. [23] ZHANG Q,CHEN J,GUO P,et al. Texture and microstructure characterization in laser additive manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb titanium alloy[J]. Materials and Design,2015,88:550-557. [24] ZHANG Guodong,LI Neng,GAO Jianshi,et al. Wire-fed electron beam directed energy deposition of Ti-6Al-2Zr-1Mo-1V alloy and the effect of annealing on the microstructure,texture,and anisotropy of tensile properties[J]. Additive Manufacturing,2022,49,102511. [25] FUNCH C V,PALMAS A,SOMLO K,et al. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures[J]. Journal of Materials Science & Technology,2021,81:67-76. [26] RAFI H K,KARTHIK N V,GONG Haijun,et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance,2013,22:3872-3883. [27] BARBA D,ALABORT C,TANG Y T,et al. On the size and orientation effect in additive manufactured Ti-6Al-4V[J]. Materials and Design,2010,186:108235. [28] CARROLL B E,PALMER T A,BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia,2015,87:309-320. [29] TAN Xipeng,KOK Yihong,TOH Weiquan,et al. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V[J]. Scientific Reports,2016,6:26039. [30] LÜTJERING G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering A,1998,243:32-45. [31] 李凯,林莺莺,陈由红,等. 等温锻造和双重退火对TC11钛合金显微组织和力学性能的影响[J]. 热加工工艺,2021,50(11):35-37,44. LI Kai,LIN Yingying,CHEN Youhong,et al. Effect of isothermal forging and duplex-annealing on microstructure and mechanical properties of TC11titanium alloy[J]. Hot Working Technology,2021,50(11):35-37,44. |