[1] 张永芳, 肖良君, 李贤伟, 等. 固定瓦-可倾瓦动压气体轴承-转子系统的非线性运动分析[J]. 机械工程学报, 2018, 54(11):187-196. ZHANG Yongfang, XIAO Liangjun, LI Xianwei, et al. Analysis of nonlinear motion of a rotor system supported by fixed-tilting pad self-acting aerodynamic bearings[J]. Journal of Mechanical Engineering, 2018, 54(11):187-196. [2] DELLACORETE C, BRUCKNER R. Remaining technical challenges and future plans for oil-free turboma-chinery[J]. ASME, J. Eng. Gas Turbines Power, 2011, 133(4):042502. [3] LUBELL D, WADE J L, CHAUHAN N S, et al. Identif-ication and correction of rotor instability in an oil-free gas turbine[C]. Proceedings of the ASME Turbo Expo:Power for Land, Sea and Air, Berlin, Germany, June 9-13, 2008. ASME Paper No. GT-50305:961-968 [4] ANDRES L, TURBULENT F. Flexure-pivot hybrid bearings for cryogenic applications[J]. Journal of Tribology, 1996, 118(1):190-200. [5] ANDRES L. Hybrid flexure pivot-tilting pad gas bearings:analysis and experimental validation[J].Journal of Tribology, 2006, 128(3):551-558. [6] ZHU Xuehua, SAN A L. Rotordynamic perfor-mance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(4):1020-1027. [7] ERTAS B. Compliant hybrid journal bearings using integral wire meshdampers[J]. ASME J. Eng. Gas Turb-ines Power, 2009, 131(2):022503. [8] ERTAS B, CAMATTI M, MARIOTTI G. Synchronous response to rotor imbalance using a damped gas bearing[J]. Journal of Engineering for Gas Turbines and Power, 2009, 132(3):032501. [9] FENG Kai, LIU Wanhui, ZHANG Z, et al. Theore-tical model of flexure pivot tilting pad gas bearings with metal mesh dampers in parallel[J]. Tribology International, 2016, 94, 26-38. [10] DELGADO A, ERTAS B H. Dynamic character-ization of a novel externally pressurized compliantly damped gas-lubricated bearing with hermetically sealed squeeze film damper modules[J]. Journal of Engineering for Gas Turbines and Power-transactions of The ASME, 2019, 141(2):021028. [11] ERTAS B, DELGADO A, MOORE J, et al. Dynamic characterization of an integralsqueeze film bearing support damper for a supercritical CO2 expander[J]. ASME J. Eng. Gas Turbines Power, 2018;140(5):052501. [12] BUGRA E, ADOLFO D. Compliant hybrid gas bearing using modular hermetically sealed squeeze film dampers[J]. Journal of Engineering for Gas Turbines and Power-transactions of The ASME, 2019, 141(2):022504. [13] ERTAS B H, DELGADO A. Hermetically sealed squeeze film damper for operation in oil-free environ-ments[J]. Journal of Engineering for Gas Turbines and Power-transactions of The ASME, 2019, 141(2):022503. [14] MAKRIS N. Theoretical and experimental investig-ation of viscous dampers in applications of seismic and vibration isolation[D]. State University of New York at Buffalo, 1992. [15] 周光泉, 刘孝敏. 黏弹性理论[M]. 合肥:中国科学技术大学出版社, 1996. ZHOU Guangquan, LIU Xiaomin. Theory of viscoelas-ticity[M]. Hefei:University of Science and Technology of China Press, 1996. [16] INAUDI J, BLONDET M, KELLY J M. Heat generation effects on viscoelastic dampers in structure[C]. Eleventh World Conference on Earthquake Engineering, Mexico, 1996, [17] ZHANG R, SOOT T. Seismic design of visco-elastic dampers for structural applications[J]. Journal of Structural Engineering, 1992, 118(5):1375-1392. |