[1] BHORE S P, DARPE A K. Investigations on characteristics of micro/meso scale gas foil journal bearings for 100-200 W class micro power systems using first order slip velocity boundary conditions and the effective viscosity model[J]. Microsystem Technologies, 2012, 19(4):509-523. [2] 刘占生,许怀锦. 波箔型动压气体径向轴承的应用与研究进展[J]. 轴承, 2008(1):39-43. LIU Zhansheng, XU Huaijin. Application and research progress of bump-type foil aerodynamic journal bearing[J]. Bearing, 2008(1):39-43. [3] KIM D, RIMPLE A M, CHANG S S, et al. Design and manufacturing of mesoscale tilting pad gas bearings for 100-200 W class PowerMEMS applications[J]. Journal of Engineering for Gas Turbines & Power, 2009, 131(4):92-99. [4] SALEHI M, HESHMAT H, WALTON J F, et al. Operation of a mesoscopic gas turbine simulator at speeds in excess of 700,000 rpm on foil bearings[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(1):170-176. [5] LEE Y B, PARK D J, KIM C H, et al. Rotordynamic characteristics of a micro turbo generator supported by air foil bearings[J]. Journal of Micromechanics & Microengineering, 2007, 17(2):297-303. [6] VLEUGELS, P, WAUMANS. High-speed bearings for micro gas turbines:stability analysis of foil bearings[J]. Journal of Micromechanics & Microengineering, 2006, 16(9):S282-S289. [7] GAD-EL-HAK M. The fluid mechanics of microdevices-the freeman scholar lecture[J]. Journal of Fluids Engineering, 1999, 121(1):5-33. [8] SHEN Sheng, CHEN Gang, CRONE R M, et al. A kinetic-theory based first order slip boundary condition for gas flow[J]. Physics of Fluids, 2007, 19(8):1064-1070. [9] ZHANG Wenming, ZHOU Jianbin, MENG Guang. Performance and stability analysis of gas-lubricated journal bearings in MEMS[J]. Tribology International, 2011, 44(7-8):887-897. [10] BHORE S P, DARPE A K. Investigations on characteristics of micro/meso scale gas foil journal bearings for 100-200 W class micro power systems using first order slip velocity boundary conditions and the effective viscosity model[J]. Microsystem Technologies, 2013, 19(4):509-523. [11] ZHANG Haijun, ZHU Changsheng, TANG Ming. Effects of rarefaction on the characteristics of micro gas journal bearings[J]. Journal of Zhejiang University, 2010, 11(1):43-49. [12] FENG Kai, LI Wenjun, XIE Yongqiang, et al. Theoretical analysis of the slip flow effect on gas-lubricated micro spherical spiral groove bearings for machinery gyroscope[J]. Microsystem Technologies, 2016, 22(2):1-13. [13] 黄海,孟光,赵三星. 二阶滑移边界对微型气浮轴承稳态性能的影响[J]. 力学学报, 2006, 38(5):668-673. HUANG Hai, MENG Guang, ZHAO Sanxing. The ffects of second-order slip-flow on the steady performance of micro gas bearing[J]. Chinese Journal of Teoretical and Applied Mechaines, 2006, 38(5):668-673. [14] LEE N S, CHOI D H, LEE Y B, et al. The influence of the slip flow on steady-state load capacity, stiffness and damping coefficients of elastically supported gas foil bearings[J]. Tribology Transactions, 2002, 45(45):478-484. [15] ZHANG Wenming, MENG Guang, WEI Xueyong. A review on slip models for gas microflows[J]. Microfluidics & Nanofluidics, 2012, 13(6):845-882. [16] LEZ S L, ARGHIR M, FRENE J. A new bump-type foil bearing structure analytical model[J]. Journal of Engineering for Gas Turbines & Power, 2007, 129(4):747-757. [17] FENG Kai, KANEKO S. Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model[J]. Journal of Tribology, 2010, 132(2):021706. [18] RAO S S, YAP F F. Mechanical vibrations[M]. New York:Addison-Wesley, 1995. [19] 王文升,郑越青,徐刚,等. 动压箔片轴承气膜厚度分布特点[J]. 轴承, 2014(10):31-34. WANG Wensheng, ZHENG Yueqing, XU Gang, et al. Characteristics of gas film thickness distribution in aerodynamic foil bearings[J]. Bearing, 2014(10):31-34. [20] 张文明, 孟光, 陈迪. 微转子系统径向气体轴承特性[J]. 机械工程学报, 2008, 44(5):25-33. ZHANG Wenming, MENG Guang, CHEN Di. Characteristics of the gas journal bearing in micro-rotor systems[J]. Chinese Journal of Mechanical Engineering, 2008, 44(5):25-33. [21] 徐刚,郑越青,王文升,等. 箔片轴承气弹耦合求解方法[J]. 机械设计与制造, 2014(7):205-207. XU Gang, ZHENG Yueqing, WANG Wensheng, et al. A method for solving elasto-aerodymacic coupling problem in foil bearing[J]. Machinery Design & Manufacture, 2014(7):205-207. [22] FENG Kai,ZHAO Xueyuan,HUO Caijiao,et al. Analysis of novel hybrid bump-metal mesh foil bearings[J]. Tribology International, 2016, 103:529-539. [23] FENG Kai, KANEKO S. Calculation of dynamic coefficients for multiwound foil bearings[J]. Journal of System Design & Dynamics, 2009, 3(5):841-852. [24] 虞烈. 弹性箔片轴承的气弹润滑解[J]. 西安交通大学学报, 2004, 38(3):327-330. YU Lie. Solution of elasto-aerodynamic lubrication for compliant foil bearings[J]. Journal of Xi' an Jiaotong University, 2004, 38(3):327-330. [25] 虞烈,戚社苗,耿海鹏. 弹性箔片空气动压轴承的完全气弹润滑解[J]. 中国科学E辑, 2005, 35(7):746-760. YU Lie, QI Shemiao, GENG Haipeng. Solution of whole elasto-aerodynamic lubrication for compliant foil bearings[J]. Science in China,Ser. E,2005,35(7):46-760. [26] ANDRES L S, CHIRATHADAM T A, ANDRÉS L S, et al. Metal mesh foil bearing:Effect of motion amplitude, rotor speed, static load, and excitation frequency on force coefficients[J]. Journal of Engineering for Gas Turbines & Power, 2011, 133(12):1201-1228. [27] FENG Kai, KANEKPO S. Parametric studies on static performance and nonlinear instability of bump-type foil bearings[J]. Journal of System Design & Dynamics, 2010, 4:871-883. |