• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (4): 209-217.doi: 10.3901/JME.2020.04.209

• 交叉与前沿 • 上一篇    下一篇

气液混合流体动态体积弹性模量理论模型研究

袁晓明1,2,3, 王储1,2, 朱轩1,2, 张立杰1,2   

  1. 1. 燕山大学河北省重型机械流体动力传输与控制重点实验室 秦皇岛 066004;
    2. 先进锻压成形技术与科学教育部重点实验室(燕山大学) 秦皇岛 066004;
    3. 浙江大学流体动力与机电系统国家重点实验室 杭州 310027
  • 收稿日期:2019-03-01 修回日期:2019-10-01 出版日期:2020-02-20 发布日期:2020-04-23
  • 通讯作者: 张立杰(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方向为液压测控技术、机器人技术和电磁发射器设计与优化。E-mail:ljzhang@ysu.edu.cn
  • 作者简介:袁晓明,男,1984年出生,博士,讲师,硕士研究生导师。主要研究方向为流体传动与控制、电磁发射器设计与优化。E-mail:xiaomingbingbing@163.com
  • 基金资助:
    国家重点研发计划重点专项(2018YFB2001201)、国家自然科学基金(51805468)、河北省自然科学基金青年科学基金(E2017203129)、浙江大学流体动力与机电系统国家重点实验室开放基金课题(GZKF-201820)和燕山大学基础研究专项青年课题(16LGB001)资助项目。

Research on Theoretical Model of Dynamic Bulk Modulus of Elasticity of Gas-liquid Mixed Fluid

YUAN Xiaoming1,2,3, WANG Chu1,2, ZHU Xuan1,2, ZHANG Lijie1,2   

  1. 1. Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004;
    2. Key Laboratory of Advanced Forging&Stamping Technology and Science(Yanshan University), Ministry of Education of China, Qinhuangdao 066004;
    3. State Key Laboratory of Fluid Power&Mechatronic Systems, Zhejiang University, Hangzhou 310027
  • Received:2019-03-01 Revised:2019-10-01 Online:2020-02-20 Published:2020-04-23

摘要: 体积弹性模量是气液混合流体的基本属性之一,但现有模型与流体压缩和膨胀过程中动态体积弹性模量的匹配度仍有待进一步提高。采用集中参数法,以完全空化模型为基础,结合改进的Henry定律和气体多变过程方程,确定气液混合流体动态体积弹性模量理论模型(Model1)。计算结果表明,由于压缩和膨胀过程中混合流体中自由气体的含量不同,动态体积弹性模量出现较为明显的“迟滞”现象,在相同压力下,压缩过程的计算结果均小于膨胀过程。由参数影响分析可知,不论是压缩过程还是膨胀过程,压力变化周期相同时,初始含气率越高,相同压力下的动态体积弹性模量越小;初始含气率相同且压力高于空气分离压时,压力变化周期越长,相同压力下的动态体积弹性模量越大,且当压力超过空气分离压的时间足够长时,气液混合流体所含空气完全溶解,体积弹性模量基本保持不变。将试验结果与Model1模型、三种稳态模型和另一种动态模型(Sakama模型)进行对比,在压缩与膨胀过程中Mode1模型与试验数据间的拟合优度分别为0.976 3和0.985 9,Sakama模型与试验数据间的拟合优度为0.969 7和0.952 1,说明Mode1模型与试验结果更接近,提高动态体积弹性模量预测的准确性。本项研究可为气液混合流体动态体积弹性模量的准确计算提供理论依据。

关键词: 气液混合流体, 动态体积弹性模量, 理论模型, 含气率, 压力

Abstract: The bulk modulus is one of the basic properties of gas-liquid mixed fluid. But the matching between the existing model and the real dynamic bulk modulus of the fluid during compression and decompression still needs to be further improved. Based on the lumped parameter method and the full cavitation model, combined with the improved Henry's law and the gas polytropic process equation,a theoretical model of dynamic bulk modulus of gas-liquid mixed fluid (Model1) is derived. The calculation results show that due to the different content of free gas in the mixed fluid during compression and expansion, the dynamic bulk modulus exhibits a more obvious “hysteresis” phenomenon. Under the same pressure, the calculation results of the compression process are smaller than that of the decompression process. From the parameter influence analysis, it can be seen that when the pressure change cycle is the same,the initial gas content rate is higher, and the dynamic bulk modulus at the same pressure is smaller whether in compression or decompression process. When the initial gas content is the same and the fluid pressure is higher than the air separation pressure, the pressure change cycle is longer, the dynamic bulk modulus at the same pressure is larger. When the pressure exceeds the air separation pressure for a long enough time, the air contained in the oil will be completely dissolved, and the bulk modulus will remain substantially unchanged. By comparing the experimental results and the calculation results of Model 1, three steady-state models and another dynamic model(Sakama model), it can be seen that, in the process of compression and decompression, the goodness of fit between the calculated results of Mode1 and the experimental results is 0.976 3 and 0.985 9 respectively and the goodness of fit between the Sakama model and experimental data is 0.969 7 and 0.952 1, which show that the calculation results of Model 1 are closer to the experimental results and improve the accuracy of dynamic bulk modulus. This study can provide theoretical basis for accurate calculation of dynamic bulk modulus of gas-liquid mixed fluid.

Key words: gas-liquid mixed fluid, dynamic bulk modulus, theoretical model, air content, pressure

中图分类号: