[1] 李文龙, 谢核, 尹周平, 等. 机器人加工几何误差建模研究:I空间运动链与误差传递[J]. 机械工程学报, 2021, 57(7):154-168. LI Wenlong, XIE He, YIN Zhouping, et al. The research of geometric error modeling of robotic machining:I spatial motion chain and error transmission[J]. Journal of Mechanical Engineering, 2021, 57(7):154-168. [2] 陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学:技术科学, 2018, 48(12):1302-1312. TAO Bo, ZHAO Xingwei, DING Han. Study on robotic mobile machining techniques for large complex components[J]. Scientia Sinica Technologica, 2018, 48(12):1302-1312. [3] ZHU Dahu, FENG Xiaozhi, XU Xiaohu, et al. Robotic grinding of complex components:A step towards efficient and intelligent machining-challenges, solutions and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:1-15. [4] ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, et al. Parameter optimization of five-axis polishing using abrasive belt flap wheel for blisk blade[J]. Journal of Mechanical Science and Technology, 2017, 31(10):4805-4812. [5] 杨桂林. 工业机器人运用技术[J]. 中国科学院院刊, 2015, 30(6):785-792. YANG Guilin. Applied industrial robotics[J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(6):785-792. [6] LIU C H, CHEN C C, HUANG J, et al. The polishing of molds and dies using a compliance tool holder mechanism[J]. Journal of Materials Processing Technology, 2005, 166:230-236. [7] 黄婷, 孙立宁, 王振华, 等. 基于被动柔顺的机器人抛磨力/位混合控制方法[J]. 机器人, 2017, 39(6):776-785. HUANG Ting, SUN Lining, WANG Zhenhua, et al. Hybrid force/position method for robotic polishing based on passive compliance structure[J]. Robot, 2017, 39(6):776-785. [8] WANG Qilong, WANG Wei, ZHENG Lianyu, et al. Force control-based vibration suppression in robotic grinding of large thin-wall shells[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:1-12. [9] LIAO Liang, XI Fengfeng, LIU Kefu. Modeling and control of automated polishing/deburring process using a dual-purpose compliant toolhead[J]. International Journal of Machine Tools & Manufacture, 2008, 48:1454-1463. [10] 段继豪, 史耀耀, 李小彪, 等. 整体叶盘柔性磨头自适应抛光实现方法[J]. 航空学报, 2021, 32(5):934-940. DUAN Jihao, SHI Yaoyao, LI Xiaobiao, et al. Adaptive polishing for blisk by flexible grinding head[J]. Acta Aeronautica et Astronautica Sinica, 2021, 32(5):934-940. [11] MOHAMMAD A E K, HONG J, WANG D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:54-65. [12] LI Jian, GUAN Yisheng, CHEN Haowen, et al. A high-bandwidth end-effector with active force control for robotic polishing[J]. IEEE Access, 2020, 8:122-135. [13] CHEN Fan, ZHAO Huan, LI Dingwei, et al. Robotic grinding of a blisk with two degrees of freedom contact force control[J]. International Journal of Advanced Manufacturing Technology, 2019, 101:461-474. [14] CHEN Fan, ZHAO Huan, LI Dingwei, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:391-403. [15] LOPES A, ALMEIDA F. A force-impedance controlled industrial robot using an active robotic auxiliary device[J]. Robotics & Computer-Integrated Manufacturing, 2008, 24:299-309. [16] YANG Guilin, ZHU Renfeng, FANG Zaojun, et al. Kinematic design of a 2R1T robotic end-effector with flexure joint[J]. IEEE Access, 2020, 8:204-213. [17] RAMPELTSHAMMER W F, KEEMINK A Q L, HERMAN V D K. An improved force controller with low and passive apparent impedance for series elastic actuators[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1220-1230. [18] GRACIA L, SOLANES J E, PAU M, et al. Adaptive sliding mode control for robotic surface treatment using force feedback[J]. Mechatronics, 2018, 52:102-118. [19] 刑宏军, 丁亮, 高海波, 等. 基于阻抗控制的机器人旋拧阀门轴向位置自适应跟踪[J]. 机械工程学报, 2019, 55(15):124-134. XING Hongjun, DING Liang, GAO Haibo, et al. Adaptive tracking of axial position for valve-turning with a robot based on impedance control[J]. Journal of Mechanical Engineering, 2019, 55(15):124-134. [20] DUAN Jinjun, GAN Yahui, CHEN Ming, et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J]. Robotics and Autonomous Systems, 2018, 102:54-65. [21] 张国龙, 杨桂林, 邓益民, 等. 磨抛机器人气电力控末端执行器负载特性[J]. 船舶工程, 2020, 42(6):15-21. ZHANG Guolong, YANG Guilin, DENG Yimin, et al. Load characteristics of pneumoelectric end-effector with force control for grinding and polishing robot[J]. Ship Engineering, 2020, 42(6):15-21. [22] SURDILOVIC D. Contact stability issues in position based impedance control:theory and experiments[C]//Institute of Electrical and Electronics Engineers. Proceedings of the IEEE International Conference on Robotics and Automation, April 22-28, 1996, Minneapolis, Minnesota, USA. Piscataway:IEEE, 1996:1675-1680. |