• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (10): 197-209.doi: 10.3901/JME.2023.10.197

• 运载工程 • 上一篇    下一篇

扫码分享

摩擦因数自适应的双离合器自动变速器起步智能控制

刘永刚1, 张静晨1, 王鑫2, 张学勇2, 吕豪2, 秦大同1   

  1. 1. 重庆大学机械传动国家重点实验室 重庆 400044;
    2. 重庆长安汽车股份有限公司 重庆 400023
  • 收稿日期:2022-07-20 修回日期:2023-02-25 出版日期:2023-05-20 发布日期:2023-07-19
  • 通讯作者: 刘永刚(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为车辆自动变速传动及智能控制、新能源汽车动力系统优化与控制。E-mail:andyliuyg@cqu.edu.cn E-mail:andyliuyg@cqu.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFE0121300)、国家自然科学基金(U1764259)和江苏省科技成果转化(BA2022033)资助项目。

Intelligent Control of Starting Process for Dual Clutch Transmissions for Friction Coefficient Self-adaptation

LIU Yonggang1, ZHANG Jingchen1, WANG Xin2, ZHANG Xueyong2, Lü Hao2, QIN Datong1   

  1. 1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044;
    2. Chongqing Changan Automobile Co., Ltd, Chongqing 400023
  • Received:2022-07-20 Revised:2023-02-25 Online:2023-05-20 Published:2023-07-19

摘要: 离合器转矩精确控制直接决定了双离合器自动变速器控制性能,离合器转矩主要受到离合器老化、温升变化等导致摩擦因数变化的影响。针对双离合器自动变速器离合器摩擦因数变化后起步控制适应性差的问题,融合基于模型的控制与数据驱动控制的特点,提出一种摩擦因数自适应的起步过程智能控制方法。首先建立双离合器自动变速器系统动力学模型,基于伪谱法优化起步过程离合器参考转速;然后制定起步过程转速闭环自适应控制策略,利用BP神经网络在线调用离合器参考转速;设计起步过程自适应滑模控制器,采用径向基神经网络估计离合器转矩,实现离合器转速闭环控制;最后通过仿真和实车测试验证所提方法。结果表明,所提方法在变意图、未知摩擦因数变化规律且存在扰动下均具有良好的起步性能,相较于不依赖机理模型的控制器具有更高的自适应能力和鲁棒性,实现了离合器摩擦因数自适应的整车起步智能控制。

关键词: 双离合器自动变速器, 起步过程, 摩擦因数, 神经网络, 自适应控制

Abstract: The control accuracy of the clutch torque has significant impact on the control performance of the dual clutch transmissions, where the clutch torque is mainly affected by the changes of friction coefficient. To improve the adaptability of starting control to clutch friction coefficients, an intelligent control method, which can adapt to different friction coefficients, is proposed by integrating the advantages of model-based and model-free control. Firstly, the dynamic model of dual clutch transmission system is established. The clutch desired speed during starting process is optimized by pseudo-spectral method. Afterwards, an adaptive control strategy of speed closed loop for the starting process is developed. The clutch desired speed is obtained in real time based on back propagation neural network. To track the clutch desired speed, the sliding mode controller is designed based on the estimated clutch torque, which is generated by radial basis function neural network. Finally, simulation and real-vehicle experiments are carried out to verify the proposed method. The results show that satisfied starting quality is achieved under the complex condition of variable starting intentions, unknown friction coefficients, and disturbances. Compared with model-free control method, the adaptive sliding mode control has superior adaptability and robustness, and the adaptive control for friction coefficient is realized.

Key words: dual clutch transmission, starting process, friction coefficient, neural network, adaptive control

中图分类号: