[1] Chinese Academy of Sciences. Sino-UK on-orbit assembly telescope project kicks off[EB/OL]. Beijing:Chinese Academy of Sciences, 2017[2023-03-10]. https://english.cas.cn/newsroom/archive/news_archive/nu2017/201711/t20171107_185757.shtml. [2] 侯欣宾,王立.空间太阳能电站技术发展现状及展望[J].中国航天, 2015(2):12-15. HOU Xinbin, WANG Li. Status and prospect of space solar power station technology[J]. Aerospace China 2015(2):12-15. [3] 肖洪,成正爱,郭宏伟,等.空间太阳能电站大折展比体展开桁架机构[J].机械工程学报, 2020, 56(13):128-137. XIAO Hong, CHENG Zhengai, GUO Hongwei, et al. Deployable truss mechanism with large deflection ratio for space solar power station[J]. Journal of Mechanical Engineering, 2020, 56(13):128-137. [4] 李团结,马小飞,华岳,等.大型空间天线在轨装配技术[J].载人航天, 2013, 19(1):86-90. LI Tuanjie, MA Xiaofei, HUA Yue, et al. On-orbit assembly technology of large space antennas[J]. Manned Spaceflight, 2013, 19(1):86-90. [5] 刘荣强,史创,郭宏伟,等.空间可展开天线机构研究与展望[J].机械工程学报, 2020, 56(5):15-26. LIU Rongqiang, SHI Chuang, GUO Hongwei, et al. Research and prospect of space deployable antenna mechanism[J]. Journal of Mechanical Engineering, 2020, 56(5):15-26. [6] MANKINS J, KAYA N, VASILE M. SPS-ALPHA:The first practical solar power datellite via arbitrarily large phased array (A 2011-2012 NIAC project)[C]//10th International Energy Conversion Engineering Conference, July 30-August 01, 2012, Atlanta, Georgia. Reston:AIAA, 2012:1-113. [7] NASA. Dragonfly:On-orbit robotic installation and reconfiguration of large solid RF reflectors[EB/OL]. USA:NASA, 2015[2023-03-10]. https://www.nasa.gov. [8] LEE N, BACKES P, BURDICK J W, et al. Architecture for in-space robotic assembly of a modular space telescope[J]. Journal of Astronomical Telescopes Instruments and Systems, 2016, 2(4):1-13. [9] XUE Z H, LIU J G, WU C C, et al. Review of in-space assembly technologies[J]. Chinese Journal of Aeronautics, 2021, 34(11):21-47. [10] FENG F, TANG L N, XU J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science China (Technological Sciences), 2016, 59(11):1621-1638. [11] FENG F, LIU Y W, LIU H, et al. Design schemes and comparison research of the end-effector of large space manipulator[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4):674-687. [12] 谭益松,刘伊威,刘宏,等.大型空间末端执行器在轨操作运输舱策略[J].机械工程学报, 2011, 47(3):109-115. TAN Yisong, LIU Yiwei, LIU Hong, et al. Transfer vehicle cargo manipulating strategy in orbit using large-scale space end-effector[J]. Journal of Mechanical Engineering, 2011, 47(3):109-115. [13] 胡成威,高升,熊明华,等.空间站核心舱机械臂关键技术[J].中国科学:技术科学, 2022, 52(9):1299-1331. HU Chengwei, GAO Sheng, XIONG Minghua, et al. Key technologies of the China space station core module manipulator[J]. Sci. Sin. Tech., 2022, 52(9):1299-1331. [14] SUN K, LIU H, XIE Z W, et al. Structure design of an end-effector for the Chinese space station experimental module manipulator[C]//The International Symposium on Artificial Intelligence, Robotics and Automation in Space, June 17-19, 2014, Montreal, Quebec, Canada. Canadian Space Agency, 2014:1-8. [15] AHLSTROM T D, DIFTLER M A, BERKA R B, et al. Robonaut2 on the international space station:Status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition, September 10-12, 2013, San Diego, California. Reston:AIAA, 2013:1-14. [16] GITAI. GITAI develops inchworm-type robotic arm extending both the capability and mobility of space robots and completes proof-of-concept demonstration (TRL3)[EB/OL]. Japan:GITAI, 2022[2023-3-10]. https://gitai.tech/. [17] 韩亮亮,赫向阳,杨健,等.一种自移动空间机械臂末端执行器的研制[J].机器人, 2016, 38(6):720-726. HAN Liangliang, HE Xiangyang, YANG Jiang, et al. Research on a novel end-effector for self-mobile space manipulator[J]. Robot, 2016, 38(6):720-726. [18] SCHERVAN T A, KREISEL J, SCHROEDER K, et al. New horizons for exploration via flexible concepts based on building blocks using the standardized iSSI (intelligent space system interface) modular coupling kit by iBOSS[C]//Global Space Exploration Conference (GLEX 2021), June 14-18, 2021, St Petersburg, Russian. Paris:IAF, 2021:1-10. [19] KREISEL J, SCHERVAN T A, SCHROEDER K, et al. A game-changing space system interface enabling multiple modular and bulding block-basded architectures for orbital and exploration missions[C]//70th International Astronautical Congress, October 21-25, 2019, Washington. Paris:IAF, 2019:1-8. [20] LETIER P, SIEDEL T, DEREMETZ M, et al. HOTDOCK:Design and validation of a new generation of standard robotic interface for On-Orbit Servicing[C]//71st International Astronautical Congress, October 12-14, 2020, Dubai. Paris:IAF, 2020:1-8. [21] DEREMETZ M, LETIER P, GRUNWALD G, et al. MOSAR-WM:A relocatable robotic arm demonstrator for future on-orbit applications[C]//71st International Astronautical Congress, October 12-14, 2020, Dubai. Paris:IAF, 2020:1-10. [22] DIAZ M D, GUERRA G, GALA J, et al. SIROM electronics design:Current state and future developments[J]. Acta Astronautica, 2023, 202:742-750. [23] KUKA. KUka LBR iiwa[EB/OL]. China:KUKA,[2023-03-10]. https://www.kuka.com. [24] ZHOU Y, WANG B, JIANG L, et al. Rapid prototyping of real-time controllers for humanoid robotics:A case study[C]//2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 11-14, 2012, Guangzhou. New York:IEEE, 2012:2339-2344. |