[1] 金学松,赵国堂,梁树林,等. 高速铁路轮轨磨损特征、机理、影响和对策-车轮踏面横向磨耗[J]. 机械工程学报,2018,54(4):3-13. JIN Xuesong,ZHAO Guotang,LIANG Shulin,et al. Characteristics,mechanisms,influences and counter measures of high speed wheel/rail wear:Transverse wear of wheel tread[J]. Journal of Mechanical Engineering,2018,54(4):3-13. [2] EKBERG A,ÅKESSON B,KABO E. Wheel/rail rolling contact fatigue-Probe,predict,prevent[J]. Wear,2014,314(1-2):2-12. [3] 郭俊,王文健,刘启跃. 高速轮轨损伤及材料优化匹配研究进展[J]. 润滑与密封,2010,35(9):118-121. GUO Jun,WANG Wenjian,LIU Qiyue,et al. Research progress of damage and material optimization matching of high-speed wheel/rail[J]. Lubrication Engineering,2010,35(9):118-121. [4] MASOUDI NEJAD R. Numerical study on rolling contact fatigue in rail steel under the influence of periodic overload[J]. Engineering Failure Analysis,2020,115:104624. [5] WALIA M S,ESMAEILI A,VERNERSSON T,et al. Thermomechanical capacity of wheel treads at stop braking:A parametric study[J]. International Journal of Fatigue,2018,113:407-415. [6] 常崇义,王成国,钱立新,等. 重载轮轨黏着特性的数值分析[J]. 中国铁道科学,2012,33(1):86-92. CHANG Chongyi,WANG Chengguo,QIAN Lixin,et al. Numerical analysis of whee/rail adhesion characteristics for heavy haul train[J]. China Railway Science,2012,33(1):86-92. [7] 唐永康,张大伟,马战国. 2万t重载列车制动与起动条件下轮轨动力特性试验研究[J]. 铁道建筑,2018,58(10):103-106. TANG Yongkang,ZHANG Dawei,MA Zhanguo,et al. Experimental study on wheel-rail dynamic characteristics of 20000 t heavy haul train under braking and starting conditions[J]. Railway Engineering,2018,58(10):103-106. [8] HE C G,GUO J,LIU Q Y,et al. Experimental investigation on the effect of operating speeds on wear and rolling contact fatigue damage of wheel materials[J]. Wear,2016,364-365:257-269. [9] CHEN Y Z,HE C G,ZHAO X J,et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis,2018,93:183-199. [10] HE C G,CHEN Y Z,HUANG Y B,et al. On the surface scratch and thermal fatigue damage of wheel material under different braking speed conditions[J]. Engineering Failure Analysis,2017,79:889-901. [11] 胡家杰,钟雯,王文健,等. 不同加载速率下PD3钢轨疲劳裂纹扩展行为研究[J]. 润滑与密封,2009,34(8):17-19. HU Jiajie,ZHONG Wen,WANG Wenjian,et al. Study on growth of fatigue crack of pd3 rail steel under different load rate condition[J]. Lubrication Engineering,2009,34(8):17-19. [12] LEE H. Generation characteristics of the airborne wear particles emitted from the wheel-rail contact for various train velocities and their generation relation with the train velocity[J]. Atmospheric Environment:X,2020,5:100068. [13] 王迪,沈恒根. 上海市一号线地铁站空气质量调研分析[J]. 建筑热能通风空调,2019,38(8):17-19. WANG Di,SHEN Henggen. Analysis of air quality in shanghai subway station[J]. Lubrication Engineering,2010,35(9):118-121. [14] KARLSSON H L,NILSSON L,MöLLER L. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells[J]. Chemical Research in Toxicology,2005,18:19-23. [15] HAHN C. Subway air is more toxic than car exhaust[EB/OL].[2006-12-31]. http://www.chinadaily.com.cn/hqbl/2006-12/31/content_772474.htm. [16] LEE H,NAMGUNG H-G,KWON S-B. Effect of train velocity on the amount of airborne wear particles generated from wheel-rail contacts[J]. Wear,2018,414-415:296-302. [17] LEE H. Generation of airborne wear particles from wheel-rail contact during rolling/sliding and pure sliding contact[J]. Wear,2019,426-427:1797-1806. [18] LEE H. The effect of water lubricant on reducing the generation of airborne wear particles from wheel-rail contacts under various train velocities[J]. Tribology International,2020,150:106393. [19] LEE H. Generation of airborne wear particles from the wheel-rail contact under wet conditions using a twin-disk rig[J]. Wear,2020,448-449:203236. [20] GRIGORATOS T,MARTINI G. Brake wear particle emissions:A review[J]. Environmental Science and Pollution Research,2015,22(4):2491-504. [21] LYU Y,LEONARDI M,WAHLSTRÖM J,et al. Friction,wear and airborne particle emission from Cu-free brake materials[J]. Tribology International,2020,141:105959. [22] 李骏,李春明. 广州轨道交通七号线地铁车辆[J]. 电力机车与城轨车辆,2015,38(3):11-15. LI Jun,LI Chunming. Guangzhou rail transit line 7 vehicle[J]. Lubrication Engineering,2015,38(3):11-15. [23] 吴维新,苗子旭,龙佳,等. 颗粒沉降动力学特性研究进展[J]. 金属矿山,2019(6):27-32. WU Weixin,MIAO Zixu,LONG Jia,et al. Research progress on dynamic characteristics of particle sedimentation[J]. Metal Mine,2019(6):27-32. [24] FAN C,QI Q,CHEN X,et al. Study on induced airflow characteristic and dust particle diffusion law at transshipment point[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2020,1-13. |