[1] 谢毅,寇峻瑜,姜梅,等. 中国铁路发展概况与技术展望[J]. 高速铁路技术,2020(1):11-16. XIE Yi,KOU Junyu,JIANG Mei,et al. General situation and technology prospect of China railway development[J]. High Speed Railway Technology,2020(1):11-16. [2] 王延朋,丁昊昊,邹强,等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,2020,49(5):120-128. WANG Yanpeng,DING Haohao,ZOU Qiang,et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology,2020,49(5):120-128. [3] 王兆成. 中长期铁路网规划研究[M]. 北京:中国铁道出版社,2004. WANG Zhaocheng. Medium and long term railway network planning research[M]. Beijing:China Railway Publishing House,2004. [4] SANDSTRÖM J,EKBERG A. Predicting crack growth and risks of rail breaks due to wheel flat impacts in heavy haul operations[J]. Proc. IMechE. Part F:J Rail Rapid Transit,2007,1558(223):153-161. [5] 张福成,杨志南,康杰. 铁路辙叉用贝氏体钢研究进展[J]. 燕山大学学报,2013,37(1):1-7. ZHANG Fucheng,YANG Zhinan,KANG Jie. Research progress of Bainite steel for railway frog[J]. Journal of Yanshan University,2013,37(1):1-7. [6] 刘启跃,王文健,周仲荣. 高速与重载铁路钢轨损伤及预防技术差异研究[J]. 润滑与密封,2007,32(11):11-14. LIU Qiyue,WANG Wenjian,ZHOU Zhongrong. An investigation on difference of rail damage and preventive technique of high-speed and heavy-haul railway[J]. Lubrication Engineering,2007,32(11):11-14. [7] KAPOOR A,FLETCHER D I,FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology,2003,41(3):331-340. [8] 王军平,周宇,沈钢. 钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响[J]. 西南交通大学学报,2021,56(3):611-618. WANG Junping,ZHOU Yu,SHEN Gang. Effect of rail hardness on fatigue cracks initiation and rail wear[J]. Journal of Southwest Jiaotong University,2021,56(3):611-618. [9] 周宇,黄旭炜,张东风,等. 重载铁路车辆轴重对钢轨疲劳裂纹萌生和磨耗发展的影响[J]. 华东交通大学学报,2019,36(4):8-16. ZHOU Yu,HUANG Xuwei,ZHANG Dongfeng,et al. Influence of axle load on rail fatigue crack initiation and wear development of heavy duty railway vehicles[J]. Journal of East China Jiaotong University,2019,36(4):8-16. [10] 徐鹏. 轴重和钢轨波磨对轮轨滚动接触参数及疲劳寿命的影响[D]. 北京:北京建筑大学,2020. XU Peng. Influence of axle load and rail wave grinding on wheel-rail rolling contact parameters and fatigue life[D]. Beijing:Beijing University of Civil Engineering and Architecture,2020. [11] SU H,PUN C L,MUTTON P. Numerical study on the ratcheting performance of heavy haul rails in curved tracks[J]. Wear,2019,436-437:203026. [12] WANG W J,GUO H M,DU X. Investigation on the damage mechanism and prevention of heavy-haul railway rail[J]. Engineering Failure Analysis,2013,35:206-218. [13] 梁喜仁,陶功权,陆文教,等. 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报,2019,55(2):147-155. LIANG Xiren,TAO Gongquan,LU Wenjiao,et al. Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering,2019,55(2):147-155. [14] 王文健,刘启跃. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[J]. 中国铁道科学,2009,30(4):137-139. WANG Wenjian,LIU Qiyue. Study on the coupling relationship between the rolling contact fatigue and the wear of wheel-rail and prevention measures[J]. China Railway Science,2009,30(4):137-139. [15] WANG W J,ZHONG W,GUO J. Investigation on rolling contact fatigue and wear properties of railway rails[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2009,223(7):1033-1039. [16] ZHANG R J,ZHENG C L,CHEN C,et cl. Study on fatigue wear competition mechanism and microstructure evolution on the surface of a bainitic steel rail[J]. Wear,2021,482-483:203978. [17] LIU C P,ZHAO X J,LIU P T,et al. Influence of slip ratio on worn-surface microstructure and fatigue wear behavior of D2 wheel steel[J]. Journal of Iron and Steel Research International,2018,25(12):1278-1286. [18] CHEN H,ZHANG C,LIU W B,et al. Microstructure evolution of a hypereutectoid pearlite steel under rolling-sliding contact loading[J]. Materials Science & Engineering A,2016,655:50-59. [19] GAO B,TAN Z,LIU Z,et al. Influence of non-uniform microstructure on rolling contact fatigue behavior of high-speed wheel steels[J]. Engineering Failure Analysis,2019,100:485-491. [20] 杨力. ASTM显微组织的带状或方向性程度评定标准简介[J]. 理化检验-物理分册,2004,40(11):585-588. YANG Li. Brief introduction of assessing the degree of banding or orientation of microstructures of ASTM[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2004,40(11):585-588. [21] OKONKWO P C,KELLY G,ROLFE B F,et al. The effect of sliding speed on the wear of steel-tool steel pairs[J]. Tribology International,2016,97:218-227. [22] RUIZ-ANDRES M,CONDE A,DAMBORENEA J D,et al. Friction and wear behavior of dual phase steels in discontinuous sliding contact conditions as a function of sliding speed and contact frequency[J]. Tribology International,2015,90:32-42. [23] FU L,TAN P,ZHU J,et al. Tribological properties of surface nanocrystalline martensite steel in vacuum[J]. Tribology International,2017,109:246-251. [24] 王文健,郭俊,刘启跃. 不同介质作用下轮轨粘着特性研究[J]. 机械工程学报,2012,48(7):100-104. WANG Wenjian,GUO Jun,LIU Qiyue. Study on adhesion characteristic of wheel/rail under different medium conditions[J]. Journal of Mechanical Engineering,2012,48(7):100-104. [25] 刘启跃. 钢轨的安定状态研究[J]. 西南交通大学学报,1995,30(4):466-471. LIU Qiyue. The study of shakedown of rail[J]. Journal of Southwest Jiaotong University,1995,30(4):466-471. [26] 郑春雷,张福成,吕博,等. 无碳化物贝氏体钢的滚动接触疲劳磨损行为[J]. 机械工程学报,2018,54(4):176-185. ZHENG Chunlei,ZHANG Fucheng,LÜ Bo,et al. Rolling contact fatigue wear behavior of carbide-free bainitic steel[J]. Journal of Mechanical Engineering,2018,54(4):176-185. [27] 钟雯,胡家杰,郭俊,等. 钢轨材料对滚动接触疲劳影响及高速铁路选轨研究[J]. 机械工程学报,2010,46(21):100-105. ZHONG Wen,HU Jiajie,GUO Jun,et al. Influence of material on rail contact fatigue damage and research on high-speed rail selection[J]. Journal of Mechanical Engineering,2010,46(21):100-105. [28] PU W,ZHU D,WANG J,et al. Rolling-sliding contact fatigue of surfaces with sinusoidal roughness[J]. International Journal of Fatigue,2016,90:57-68. |