• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (22): 255-265.doi: 10.3901/JME.2021.22.255

• 运载工程 • 上一篇    下一篇

扫码分享

基于Libra R-CNN改进的交通标志检测算法

赵子婧1, 刘宏哲1, 曹东璞2   

  1. 1. 北京联合大学北京市信息服务工程重点实验室 北京 100101;
    2. 滑铁卢大学认知自动驾驶实验室 滑铁卢 ON N2L 3G1 加拿大
  • 收稿日期:2020-11-10 修回日期:2021-06-26 出版日期:2021-11-20 发布日期:2022-02-28
  • 通讯作者: 刘宏哲(通信作者),女,1971年出生,博士,教授,硕士研究生导师。主要研究方向为人工智能、视觉智能、认知计算和视觉计算。E-mail:liuhongzhe@buu.edu.cn
  • 作者简介:赵子婧,女,1996年出生。主要研究方向为计算机视觉、无人驾驶。E-mail:181083520409@buu.edu.cn;曹东璞,男,1978年出生,博士,副教授。主要研究方向为车辆控制和智能化、自动驾驶、平行驾驶。E-mail:dongpu.cao@uwaterloo.ca
  • 基金资助:
    国家自然科学基金(61871039,61906017,61802019)、北京市教委(KM202111417001,KM201911417001)、视觉智能协同创新中心(CYXC2011)、北京联合大学学术研究(ZB10202003,ZK80202001,XP202015)和北京联合大学研究生资助项目。

Improved Traffic Sign Detection Algorithm Based on Libra R-CNN

ZHAO Zijing1, LIU Hongzhe1, CAO Dongpu2   

  1. 1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101;
    2. Waterloo Cognitive Autonomous Driving (CogDrive) Lab, University of Waterloo, Waterloo ON N2L 3G1, Canada
  • Received:2020-11-10 Revised:2021-06-26 Online:2021-11-20 Published:2022-02-28

摘要: 随着人工智能领域的快速发展,深度学习在无人驾驶领域中的应用逐渐成熟,但是其中交通标志检测任务作为难点问题仍有很大的改进空间。城市道路下的交通标志检测具有环境复杂、小目标多、目标种类多且数量不平衡的特点,针对这些问题,提出基于Libra R-CNN进行改进的方案。Libra R-CNN目标检测网络是基于平衡提出的,能够较好应对目标种类多及数量不平衡问题,在Libra R-CNN网络的锚框提取样本阶段,使用GA-RPN生成锚框,从而在训练期间产生更精确、更多样化的样本,减少背景影响和小目标不好定位的问题,提高检测准确率。该方法通过试验验证了有效性。试验是在MS COCO 2017和交通标志数据集上进行的。改进后的Libra R-CNN的mAP提高了超2.7个百分点。试验结果表明,改进后的网络相比原有的目标检测网络性能有了显著提升。

关键词: 计算机视觉, 深度学习, 目标检测, 交通标志检测, 改进的LibraR-CNN, GA-RPN

Abstract: In order to study the potential benefits and constraints of controlling vehicle braking in reducing ground related injury, 139 real world pedestrian-vehicle accidents are selected from the pre-accumulated accident database firstly, and then all selected accidents are reconstructed by PC-Crash, after that a vehicle braking method is applied to each reconstructed cases, finally the injury in various parts of human body, collision location of the head-car and head- ground, and temporal/spatial constraints during braking control are collected. Results show that the vehicle full braking after the impact does not have a significant influence on pedestrian injury in real world accidents; through controlling vehicle braking, the ground related head/pelvis injury can be reduced significantly but the vehicle related injury will not increase, and the coincidence rate of the collision position of head-car and head-ground can be reduced; but controlling vehicle braking requires the vehicle to make a judgment in a short time to correctly control the vehicle and 8.4% of cases do not have enough space for the vehicle to carry out a braking control.

Key words: computer vision, deep learning, target detection, traffic sign detection, improved Libra R-CNN, GA-RPN

中图分类号: