机械工程学报 ›› 2021, Vol. 57 ›› Issue (11): 228-242.doi: 10.3901/JME.2021.11.228
王大刚1, 朱辉龙1, 高文丽1, 张德坤1, 谭佃龙2, 赵霞2
收稿日期:
2020-10-21
修回日期:
2021-02-26
出版日期:
2021-06-05
发布日期:
2021-07-23
通讯作者:
王大刚(通信作者),男,1984年出生,博士,副教授。主要研究方向为摩擦疲劳学理论及应用。E-mail:wangdg@cumt.edu.cn
基金资助:
WANG Dagang1, ZHU Huilong1, GAO Wenli1, ZHANG Dekun1, TAN Dianlong2, ZHAO Xia2
Received:
2020-10-21
Revised:
2021-02-26
Online:
2021-06-05
Published:
2021-07-23
摘要: 为揭示悬索桥主缆钢丝动态接触与滑移机理,运用自制钢丝动态接触与滑移试验台开展单摩擦周期中平行钢丝间动态接触与滑移试验,通过高速度数码显微系统原位观测、扫描电子显微镜、能谱仪和有限元仿真揭示了平行钢丝间动态接触和滑移特性(横向滑移、纵向变形、接触状态、摩擦力、摩擦因数、应力分布)及磨损机理(磨痕形貌和元素分布)及其受到横向和纵向接触位置、循环周次、滑移幅值和接触载荷的影响规律。结果表明:在单摩擦周期中,钢丝间动态接触状态均为黏着-完全滑移-黏着-完全滑移,钢丝横向滑移和摩擦力均呈增加-稳定-减小-稳定-增加的变化趋势,上、下钢丝纵向变形总体呈相反变化趋势。固定的下钢丝沿上钢丝运行方向的横向位置及与接触面距离增大方向的纵向位置的横向滑移和纵向变形均降低。循环周次增加导致下钢丝的横向滑移和纵向变形均增加,摩擦因数呈增加-减小-增加-稳定变化趋势,磨损机理包括黏着磨损、磨粒磨损、挤压磨损、疲劳磨损。滑移幅值和接触载荷的增加均导致冲程第2阶段下钢丝横向变形均值增大,分别导致上、下钢丝纵向变形波动幅值增大、纵向变形差异性变化,摩擦因数分别增大和降低,磨损机理包括黏着磨损、挤压磨损、疲劳磨损和磨粒磨损。
中图分类号:
王大刚, 朱辉龙, 高文丽, 张德坤, 谭佃龙, 赵霞. 悬索桥主缆平行钢丝动态接触与滑移机理研究[J]. 机械工程学报, 2021, 57(11): 228-242.
WANG Dagang, ZHU Huilong, GAO Wenli, ZHANG Dekun, TAN Dianlong, ZHAO Xia. Research on Dynamic Contact and Slip Mechanisms of Parallel Steel Wires in the Main Cable of Suspension Bridge[J]. Journal of Mechanical Engineering, 2021, 57(11): 228-242.
[1] 李万恒. 千米级多塔连跨悬索桥中间塔适宜刚度及连跨效应研究[D]. 北京:北京交通大学,2017. LI Wanheng. Suitable middle-pylon stiffness and mechanical transmission effectin kilometer level multi-pylon continuous suspension bridge[D]. Beijing:Beijing Jiaotong University,2017. [2] 孟凡超,王仁贵,徐国平. 悬索桥[M]. 北京:人民交通出版社,2016. MENG Fanchao,WANG Rengui,XU Guoping. Suspension bridge[M]. Beijing:China Communications Press,2016. [3] 张家男. 桥梁拉吊索用高强镀锌钢丝锈蚀与疲劳性能研究[D]. 大连:大连理工大学,2016. ZHANG Jianan. Study on corrosion and fatigue properties of high-strength galvanized steel wire used for cable of bridge[D]. Dalian:Dalian University of Technology,2016. [4] 刘海涛. 强风作用下列车-汽车-桥梁时变系统的动力响应及行车安全性、舒适性研究[D]. 长沙:中南大学,2011. LIU Haitao. Dynamic responses of coupled train,automobile and bridge system under strong wind and analysis of running safety and riding comfort of vehicles[D]. Changsha:Central South University,2011. [5] 王少钦,马骎,任艳荣,杨谆. 主跨1120 m铁路悬索桥风-车-桥耦合振动响应分析[J]. 铁道科学与工程学报,2017,14(6):1241-1248. WANG Shaoqin,MA Li,REN Yanrong,et al. Dynamic interaction analysis on wind-train-bridge system of long-span railway suspension bridge[J]. Journal of Railway Science and Engineering,2017,14(6):1241-1248. [6] 张卓杰. 大跨度桥梁索结构丝股分离与滑移机理及其力学行为的研究[D]. 广州:华南理工大学,2016. ZHANG Zhuojie. Mechanism and mechanical behavior of delamination and slippage between wires or strands of cables for large-span bridges[D]. Guangzhou:South China University of technology,2016. [7] MONTOYA A,WAISMAN H,BETTI R. A simplified contact-friction methodology for modeling wire breaks in parallel wire strands[J]. Computers and Structures,2012,100-101:39-53. [8] 张清华,李乔,周凌远. 悬索桥主缆与鞍座摩擦特性理论分析方法[J]. 中国公路学报,2014,27(1):44-50. ZHANG Qinghua,LI Qiao,ZHOU Lingyuan. Theoretical analysis of cable-saddle friction characteristics for suspension bridges[J]. China Journal of Highway and Transport,2014,27(1):44-50. [9] CHENG Zhenyu,ZHANG Qinghua,BAO Yi,et al. Analytical models of frictional resistance between cable and saddle equipped with friction plates for multispan suspension bridges[J]. Journal of Bridge Engineering,2018,23(1):1-13. [10] 齐东春,沈锐利,刘章军,等. 悬索桥有限元计算的三节点空间鞍座单元[J]. 西南交通大学学报,2014,49(6):942-947. QI Dongchun,SHEN Ruili,LIU Zhangjun,et al. 3-Node sptial saddle element for finite element calculation of suspension bridge[J]. Journal of Southwest Jiaotong University,2014,49(6):942-947. [11] 严琨,沈锐利,闫勇. 大跨度悬索桥鞍座出口处主缆的二次应力[J]. 重庆交通大学学报,2012,31(2):191-194+288. YAN Kun,SHEN Ruili,YAN Yong. Secondary stress of the first segment main cable near the saddles in long-span suspension bridge[J]. Journal of Chongqing Jiaotong University,2012,31(2):191-194+288. [12] 严琨. 大跨度悬索桥主缆弯曲刚度效应及二次应力研究[D]. 成都:西南交通大学,2015. YAN Kun. Study on bending stiffness effect and secondary stress of main cable of long span suspension bridge[D]. Chengdu:Southwest Jiaotong University,2015. [13] 季申增. 悬索桥主缆与索鞍间侧向力及摩擦滑移特性分析[D]. 成都:西南交通大学,2017. JI Shenzeng. Character analysis of lateral force and slip friction between main cable and saddle in suspension bridge[D]. Chengdu:Southwest Jiaotong University,2017. [14] 肖纬,王志强,魏红一. 考虑缆索滑移的精细化索鞍模型[J]. 石家庄铁道大学学报,2016,29(2):22-27. XIAO Wei,WANG Zhiqiang,Wei HONGYI. Detailed saddle model considering stick-slip of the cable[J]. Journal of Shijiazhuang Tiedao University,2016,29(2):22-27. [15] CHUNG K S,CHO J Y,PARK J,et al. Three-dimensional elastic catenary cable element considering sliding effect[J]. Journal of Engineering Mechanics,2011,137(4):276-283. [16] 常大宝. 泰州长江大桥主缆架设施工技术与控制指标[J]. 中外公路,2011,31(5):145-148. CHANG Dabao. Construction technology and control index of main cable erection of Taizhou Yangtze River Bridge[J]. Journal of China & Foreign Highway,2011,31(5):145-148 [17] 谢雪峰,罗喜恒. 多塔连跨悬索桥受力特性分析[J]. 渤海大学学报,2018,39(2):182-187. XIE Xuefeng,LUO Xiheng. Analysis of mechanical characteristics of multi tower continuous span suspension bridge[J]. Journal of Bohai University,2018,39(2):182-187. [18] 郭永波. 柔性钢丝绳的动态摩擦传动理论建模及试验研究[D]. 徐州:中国矿业大学,2018. GUO Yongbo. Theoretical modeling and experimental research on dynamic friction transmission of flexible wire rope[D]. Xuzhou:China University of Mining and Technology,2018. [19] 冯存傲,张德坤,郭永波,等. 基于弧面法的摩擦式提升机衬垫摩擦性能测定[J]. 煤炭学报,2017,42(7):1899-1905. FENG Cunao,ZHANG Dekun,GUO Yongbo,et al. A measurement to study on the frictional properties of friction hoist's liner based on arc method[J]. Journal of China Coal Society,2017,42(7):1899-1905. [20] FENG Cunao,ZHANG Dekun,CHEN Kai,et al. Study on viscoelastic friction and wear between friction linings and wire rope[J]. International Journal of Mechanical Sciences,2018,142-143:140-152. [21] 王振廷,孟君晟. 摩擦磨损与耐磨材料[M]. 哈尔滨:哈尔滨工业大学出版社,2013. WANG Zhenyan,MENG Junsheng. Frictional wear and wear resistant materials[M]. Harbin:Harbin Institute of Technology Press,2013. [22] WANG Dagang,ZHANG Dekun,GE Shirong. Fretting-fatigue behavior of steel wires in low cycle fatigue[J]. Materials & Design,2011,32(10):4986-4993. [23] WANG Dagang,ZHANG Dekun,GE Shirong. Effect of displacement amplitude on fretting fatigue behavior of hoisting rope wires in low cycle fatigue[J]. Tribology International,2012,52:178-189. [24] 王大刚,张德坤. 提升钢丝绳力学建模与微动疲劳损伤行为研究[M]. 长沙:中南大学出版社,2015. WANG Dagang,ZHANG Dekun. Study on mechanical modeling and fretting fatigue damage behavior of lifting wire rope[M]. Changsha:Central South University Press,2015. [25] 王祥如. 钢丝多轴微动腐蚀疲劳损伤机理研究[D]. 徐州:中国矿业大学,2018. WANG Xiangru. Study on multiaxial fretting corrosion fatigue damage mechanism of steel wires[D]. Xuzhou:China University of Mining and Technology,2018. [26] 郑健锋. 车轴钢不同模式微动磨损行为研究[D]. 成都:西南交通大学,2010. ZHENG Jianfeng. Studies on fretting wear behaviors of axle steels under varied modes[D]. Chengdu:Southwest Jiaotong University,2010. [27] 张德坤,葛世荣,熊党生. 矿井提升机用提升钢丝绳的微动磨损行为研究[J]. 摩擦学学报,2001(5):43-46. ZHANG Dekun,GE Shirong,XIONG Dangsheng. Fretting wear behavior of hoisting rope in mining hoister[J]. Journal of Tribology,2001(5):43-46. [28] 张德坤. 钢丝的微动磨损及其损伤疲劳行为研究[M]. 徐州:中国矿业大学出版社,2005. ZHANG Dekun. Fretting wear and damage fatigue behavior of steel wire[M]. Xuzhou:China University of mining and Technology Press,2005. [29] 沈燕,张德坤,王大刚,等. 接触载荷对钢丝微动磨损行为影响的研究[J]. 摩擦学学报,2010,30(4):404-408. SHEN Yan,ZHANG Dekun,WANG Dagang,et al. Effect of contact load on the fretting wear behavior of steel wire[J]. Journal of Tribology,2010,30(4):404-408. [30] 刘源. 摩擦衬垫的动态接触与微观摩擦机理研究[D]. 徐州:中国矿业大学,2017. LIU Yuan. Study on dynamic contact and microscopic friction mechanism of friction lining[D]. Xuzhou:China University of Mining and Technology,2017. |
[1] | 吕步高, 孟祥慧, 汤义虎, 陈康, 尹家宝, 谢友柏. 船用发动机重载工况下凸轮-滚轮-滚轮销耦合混合热弹流润滑分析[J]. 机械工程学报, 2024, 60(19): 116-131. |
[2] | 李梦璇, 丁昊昊, 安博洋, 王文健, 林强, 陈嵘, 刘启跃. U71Mn钢轨在工业与海洋大气环境下腐蚀与磨损行为研究[J]. 机械工程学报, 2024, 60(19): 132-143. |
[3] | 王大刚, 徐伟, 李陈晨, 孙跃威. 工况参数对悬索桥主缆索股与鞍座动态接触与微滑移行为的影响研究[J]. 机械工程学报, 2024, 60(19): 144-158. |
[4] | 曾鑫, 赖建平, 王驰, 袁小虎, 李丁骏, 余家欣. 基于高通量磁控共溅射技术的非晶合金纳米摩擦学性能研究[J]. 机械工程学报, 2024, 60(15): 185-193. |
[5] | 朱鹏娟, 刘晓玲, 周亚林, 何文卓, 郭峰. 混合陶瓷球轴承的热混合润滑性能分析[J]. 机械工程学报, 2024, 60(15): 205-215. |
[6] | 郭美玲, 杨雷, 李鹏阳, 许振涛, 许超愿, 王权岱, 李言. 氟等离子体对石墨烯纳晶碳膜的刻蚀加工及摩擦学性能调控[J]. 机械工程学报, 2024, 60(15): 216-226. |
[7] | 王优强, 徐莹, 莫君, 何彦, 赵涛, 倪陈兵. 磁场作用下水基磁流体对TC4与Si3N4摩擦学性能影响的实验研究[J]. 机械工程学报, 2024, 60(7): 174-183. |
[8] | 陈守安, 肖科, 程功, 韩彦峰. 混合润滑下考虑表面形貌的齿面摩擦与接触特性[J]. 机械工程学报, 2024, 60(7): 184-194. |
[9] | 蒋鑫池, 卢纯, 莫继良, 陈孝婷, 张庆贺, 赵婧. 考虑磨损率随温度变化的列车制动摩擦块高温磨损仿真分析[J]. 机械工程学报, 2024, 60(7): 195-202. |
[10] | 朱少禹, 张向军, 孙军, 王大刚. 粗糙表面轴承微极流体润滑的平均流量模型[J]. 机械工程学报, 2024, 60(7): 203-211. |
[11] | 项载毓, 莫继良, 贺德强, 朱松, 翟财周, 杜利清. 基于三明治阻尼结构的高速列车制动摩擦振动噪声抑制[J]. 机械工程学报, 2024, 60(5): 196-208. |
[12] | 金旭阳, 栗心明, 刘耀, 杨萍, 郭峰, 高军斌. 周期性载荷下润滑剂回填效应试验观察[J]. 机械工程学报, 2024, 60(3): 203-213. |
[13] | 王伟, 魏春艳, 屈怡珅, 董少文, 吕凡凡, 金杰, 王快社. 黑磷烯量子点作为水基润滑添加剂的摩擦学性能研究[J]. 机械工程学报, 2024, 60(3): 226-237. |
[14] | 王文健, 岳子恒, 向鹏程, 丁昊昊, 林强, 陈勇, 郭俊, 刘启跃. 列车轮轨增黏撒砂过程试验模拟与撒砂效果研究[J]. 机械工程学报, 2023, 59(22): 424-432. |
[15] | 葛翔宇, 吴晓东, 石秋雨, 宋仕祎, 王文中. 电场环境下聚乙二醇在钢/钢界面的摩擦性能研究[J]. 机械工程学报, 2023, 59(21): 313-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||