• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (22): 424-432.doi: 10.3901/JME.2023.22.424

• 运载工程 • 上一篇    下一篇

扫码分享

列车轮轨增黏撒砂过程试验模拟与撒砂效果研究

王文健1, 岳子恒1, 向鹏程1,2, 丁昊昊1, 林强1, 陈勇3, 郭俊1, 刘启跃1   

  1. 1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031;
    2. 成都飞机工业(集团)有限责任公司 成都 610092;
    3. 大功率交流传动电力机车系统集成国家重点实验室 株洲 412001
  • 收稿日期:2022-12-19 修回日期:2023-05-05 出版日期:2023-11-20 发布日期:2024-02-19
  • 通讯作者: 林强(通信作者),男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为轨道交通轮轨服役损伤检测技术。E-mail:linqiang6350@163.com
  • 作者简介:王文健,男,1980年出生,博士,研究员,博士研究生导师。主要研究方向为轨道交通轮轨系统服役与运维技术。E-mail:wwj527@163.com
  • 基金资助:
    国家自然科学基金(52272443)、牵引动力国家重点实验室自主研究课题(2020TPL-T10)、成都市国际科技合作(2020-GH03-00001-HZ)和西南交通大学基础研究培育支持计划学科交叉研究专项(2682023ZTPY022)资助项目。

Study on Experimental Simulation of Sanding Process for Train Wheel-rail Improving Adhesion and Sanding Effect

WANG Wenjian1, YUE Ziheng1, XIANG Pengcheng1,2, DING Haohao1, LIN Qiang1, CHEN Yong3, GUO Jun1, LIU Qiyue1   

  1. 1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031;
    2. Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610092;
    3. The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration, Zhuzhou 412001
  • Received:2022-12-19 Revised:2023-05-05 Online:2023-11-20 Published:2024-02-19

摘要: 轮轨界面撒砂增黏作为保障列车安全可靠运行的重要手段,是一个动态复杂的过程,涉及颗粒从撒砂装置加速后的喷射行为、喷射后砂颗粒进入轮轨界面的弹射行为、破碎后增黏及摩擦磨损行为。基于列车运动中轮轨的相对运动关系,设计研发1∶1全尺寸列车轮轨增黏撒砂过程模拟装置,构建撒砂过程可视化检测分析技术,实现不同列车速度(0~120 km/h)、横风速度(0~15 m/s)、撒砂器类型、喷嘴安装位置、增黏颗粒特性、撒砂参数等多参数下列车轮轨增黏撒砂过程的真实模拟与检测。利用文丘里撒砂器进行砂颗粒喷射行为与颗粒利用率试验,结果表明,在无横风条件下,砂颗粒的喷射轨迹基本呈现锥状,随砂颗粒粒径增大,颗粒喷射速度呈现降低趋势,喷射过程中随流性变差,更难进入轮轨界面,降低砂颗粒利用率;随着横风速度增大,砂颗粒喷射轨迹的最大偏移角度也逐渐增大。未来可利用研发设计的列车轮轨增黏撒砂过程模拟装置与检测技术进行列车增黏撒砂影响因素与关键参数的研究,为现场列车撒砂增黏性能优化提升和制定撒砂增黏技术标准提供关键支撑。

关键词: 轮轨增黏, 撒砂模拟装置, 撒砂效果, 颗粒喷射速度, 颗粒利用率

Abstract: As an important method to ensure the safe and reliable operation of the train, the improving adhesion by wheel-rail interface sanding is a dynamic and complex process, which involves the jetting behavior of particles after acceleration from the sanding device, the ejection behavior of sand particles entering the wheel-rail interface after jetting, improving adhesion after crushing and friction and wear behaviors. Based on the relative motion relationship between wheel and rail during train operation, a 1∶1 full-scale simulation device for sanding process for train wheel-rail improving adhesion is designed and developed, and the visual detection and analysis technology of sanding process is constructed, which realizes real simulation and detection of sanding process for wheel-rail improving adhesion under different train speeds (0~120 km/h), crosswind velocity (0~15 m/s), types of sanding spreader, installation positions of nozzles, characteristics of improving adhesion particles, sanding parameters conditions. The experiments of sand particle jetting behavior and particle utilization rate were carried out by venturi sanding spreader. The results show that under no cross wind condition, the jetting trajectory of sand particles basically presents a cone shape. With the increase of sand particle size, the particle jetting speed shows a decreasing trend. The fluidity becomes worse in the jetting process, which makes it more difficult to enter the wheel-rail interface and reduces the utilization rate of sand particles. As the cross wind velocity increases, the maximum offset angle of the sand particles jetting trajectory also gradually increases. In future, the developed and designed simulation device and detection technology can be used to study the influencing factors and key parameters of train sanding improving adhesion, which to provide key support for the optimization and improvement of on-site train sanding improving adhesion and the setting of sanding technical standards.

Key words: wheel-rail improving adhesion, sanding simulation device, sanding effect, particle jetting speed, particle utilization rate

中图分类号: