[1] ARIAS-CUEVAS O. Low adhesion in the wheel-rail contact[D]. Delft:Technical University Delft, 2010. [2] 王文健,郭俊,刘启跃. 不同介质作用下轮轨粘着特性研究[J]. 机械工程学报, 2012, 48(7):100-104. WANG Wenjian, GUO Jun, LIU Qiyue. Study on adhesion characteristic of wheel/rail under different medium conditions[J]. Journal of Mechanical Engineering, 2012, 48(7):100-104. [3] LEWIS S R, LEWIS R, RICHARDS P, et al. Investigation of the isolation and frictional properties of hydrophobic products on the rail head, when used to combat low adhesion[J]. Wear, 2014, 314(1-2):213-219. [4] BUCKLEY-JOHNSTONE L E, TRUMMER G, VOLTR P, et al. Full-scale testing of low adhesion effects with small amounts of water in the wheel/rail interface[J]. Tribology International, 2020, 141:105907. [5] UK Railway Safety and Standards Board. Guidance on wheel/rail low adhesion measurement (Issue One):GM/GN2642[S]. London:British Standards Institution, 2008. [6] UK Railway Safety and Standards Board. Guidance on testing of wheel slide protection system fitted on rail vehicles (Issue One):GM/GN2695[S]. London:British Standards Institution, 2010. [7] WANG W J, SHEN P, SONG J H, et al. Experimental study on adhesion behavior of wheel/rail under dry and water conditions[J]. Wear, 2011, 271(9-10):2699- 2705. [8] WU B, WEN Z F, WU T, et al. Analysis of thermal effect on high-speed wheel/rail adhesion under interfacial contamination using a three-dimensional model with surface roughness[J]. Wear, 2016, 366-367:95-104. [9] ARIAS-CUEVAS O, LI Z, LEWIS R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268(3-4):543-551. [10] 师陆冰,李群,郭俊,等. 不同工况下轮轨黏着-蠕滑曲线特性研究[J]. 机械工程学报, 2019, 55(10):151-157. SHI Lubing, LI Qun, GUO Jun, et al. Adhesion-creep curve characteristics of wheel/rail under various conditions[J]. Journal of Mechanical Engineering, 2019, 55(10):151-157. [11] ISHIZAKA K, LEWIS S R, LEWIS R. The low adhesion problem due to leaf contamination in the wheel/rail contact:Bonding and low adhesion mechanisms[J]. Wear, 2017, 378-379:183-197. [12] BUCKLEY-JOHNSTONE L E, TRUMMER G, VOLTR P, et al. Assessing the impact of small amounts of water and iron oxides on adhesion in the wheel/rail interface using high pressure torsion testing[J]. Tribology International, 2019, 135:55-64. [13] GALAS R, OMASTA M, SHI L B, et al. The low adhesion problem:The effect of environmental conditions on adhesion in rolling-sliding contact[J]. Tribology International, 2020, 151:106521. [14] SOSNOV I I, OSENIN Y Y, OSENIN Y I, et al. Improvement of adhesion of the wheels of the railway carriage to the rails by means of supply of the scale and magnetite particles to the contact zone[J]. Journal of Friction and Wear, 2018, 39(4):330-334. [15] 张国文. 踏面清扫器研磨子材料对动车安全可靠性影响的研究[D]. 北京:中国铁道科学研究院, 2012. ZHANG Guowen. Study on abrasive block of tread cleaning influence of safety reliability for multiple unit train[D]. Beijing:China Academy of Railway Sciences, 2012. [16] Adhesion Working Group. Managing low adhesion (sixth edition)[R]. London:Rail Safety and Standards Board, 2018. [17] 张军,王雪萍,马贺. 增黏砂对机车车轮踏面剥离影响的试验研究[J]. 机械工程学报, 2018, 54(8):68-73. ZHANG Jun, WANG Xueping, MA He. Experimental study on influence of sanding on peeling of wheel tread of locomotive[J]. Journal of Mechanical Engineering, 2018, 54(8):68-73. [18] 王文健,刘启跃. 轮轨黏着行为与增黏[M]. 北京:科学出版社, 2017. WANG Wenjian, LIU Qiyue. Wheel-rail adhesion behaviour and improving adhesion[M]. Beijing:Science Press, 2017. [19] Adhesion Working Group. T1046 Review of the risk and opportunities from the application of sand during braking[R]. London:Railway Safety and Standards Board, 2015. [20] KUMAR S, KRSIHNAMOORTHY P K, RAO D L P. Wheel-rail wear and adhesion with and without sand for north American locomotive[J]. Journal of Engineering Industry Transcation, 1986, 108(2):141-147. [21] LEWIS S, RILEY S, FLETCHER D I, et al. Optimisation of a railway sanding system, Part2:Adhesion tests[C]//Proceedings of the 10th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2015), Colorado, 2015. [22] ARIAS-CUEVAS O, LI Z. A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel-rail contact[J]. Wear, 2011, 271(1):14-24. [23] OMASTA M, MACHATKA M, SMEJKAL D, et al. Influence of sanding parameters on adhesion recovery in contaminated wheel-rail contact[J]. Wear, 2015, 322-323:218-225. [24] WANG W J, ZHANG H F, WANG H Y, et al. Study on the adhesion behavior of wheel/rail under oil, water and sanding conditions[J]. Wear, 2011, 271(9-10):2693-2698. [25] DESCARTES S, RENOUF M, FILLOT N, et al. A new mechanical-electrical approach to the wheel-rail contact[J]. Wear, 2008, 265:1408-1416. [26] ARIAS-CUEVAS O, LI Z. A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel-rail contact[J]. Wear, 2011, 271(1):14-24. [27] FACCOLI M, PETROGALLI C, LANCINI M, et al. Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels[J]. Wear, 2017, 396-397:146-161. [28] 中华人民共和国铁道部. 机车、动车用撒砂装置:TB/T 2354-2011[S]. 北京:中国标准出版社, 2011. Ministry of Railways of People's Republic of China. Sanding device for locomotives and motor vehicles:TB/T 2354-2011[S]. Beijing:Standards Press of China, 2011. [29] 向鹏程. 列车撒砂过程模拟检测装置设计及试验研究[D]. 成都:西南交通大学, 2021. XIANG Pengcheng. Design of simulation test device for train sanding process and experimental research[D]. Chengdu:Southwest Jiaotong University, 2021. [30] 叶佳辉. 颗粒与壁面的碰撞反弹特性研究[D]. 杭州:浙江理工大学, 2019. YE Jiahui. Study on collision and rebounding behavior of particle impact on the wall surfae[D]. Hangzhou:Zhejiang Sci-Tech University, 2019. [31] 岑可法,樊建人. 工程气固多相流动的理论及计算[M]. 杭州:浙江大学出版社, 1990. CEN Kefa, FAN Janren. Theory and calculation of engineering gas-solid multiphase flow[M]. Hangzhou:Zhejiang University Press, 1990. [32] 许盼. 高压密相气力输送气固两相流动特性研究[D]. 南京:东南大学, 2019. XU Pan. Study of gas-solid two-phase flow characteristics of high-pressure dense-phase pneumatic conveying[D]. Nanjing:Southeast University, 2019. |