• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (1): 19-27.doi: 10.3901/JME.2021.01.019

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于改进势场蚁群算法的移动机器人全局路径规划

马小陆, 梅宏   

  1. 安徽工业大学电气与信息工程学院 马鞍山 243000
  • 收稿日期:2019-11-30 修回日期:2020-02-28 出版日期:2021-01-05 发布日期:2021-02-06
  • 通讯作者: 马小陆(通信作者),男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为嵌入式、车联网和服务机器人。E-mail:77578249@qq.com
  • 作者简介:梅宏,男,1995年出生,硕士研究生。主要研究方向为移动机器人路径规划。E-mail:2907666570@qq.com
  • 基金资助:
    国家自然科学基金(51574004)、安徽高校自然科学研究重点(KJ2019A0065)、安徽省科技重大专项计划(16030901032)和芜湖市2017年度科技计划(2017yf26)资助项目。

Mobile Robot Global Path Planning Based on Improved Ant Colony System Algorithm with Potential Field

MA Xiaolu, MEI Hong   

  1. School of Electrical and Information Engineering, Anhui University of Technology, Maanshan 243000
  • Received:2019-11-30 Revised:2020-02-28 Online:2021-01-05 Published:2021-02-06

摘要: 针对势场蚁群算法路径转折点数量过多、收敛速度过快、容易陷入局部最优等问题,提出了基于势场跳点的蚁群算法。该算法融合了蚁群算法和跳点搜索算法的搜索策略,使规划出的路径更加平滑;引入了势场合力递减系数,减少了势场蚁群算法因势场而陷入的局部最优问题;引入了简化的跳点搜索算法对初始化信息素进行更新,提高了算法前期的搜索效率。为验证该算法的有效性,使用不同规格的栅格地图进行了仿真试验,仿真结果表明,相比于势场蚁群算法,该算法能够有效减少收敛迭代次数,其收敛搜索时间更短,且最终搜索到的路径更优。最后将该算法应用到实际的基于ROS的移动机器人导航试验中,试验结果表明,该算法能有效解决移动机器人全局路径规划问题,且能明显提升机器人全局路径规划的效率。

关键词: 移动机器人, 路径规划, 蚁群算法, 人工势场法, 跳点搜索算法

Abstract: Aiming at the problems of too many turning points, too fast convergence speed and easily falling into local optimum of potential field ant colony algorithm, an jump point ant colony system algorithm with potential field is proposed. The algorithm fuses the search strategy of ant colony algorithm and jump point search algorithm to make the planned path smoother. By introducing the coefficient of force decline in potential field, the local optimal problem of potential field ant colony algorithm is reduced. A simplified jump point search algorithm is introduced to update the initial pheromones and improve the search efficiency at the early stage. In order to verify the effectiveness of the algorithm, raster maps of different specifications are used for simulation experiments. The simulation results show that compared with the potential field ant colony algorithm, the algorithm can effectively reduce the number of convergence iterations, its convergence search time is shorter, and the final search path is better. Finally, the algorithm is applied to the actual mobile robot navigation based on ROS experiment, the experimental results show that the proposed algorithm can effectively solve the problem of mobile robot global path planning, and can significantly improve the efficiency of robot global path planning.

Key words: mobile robot, path planning, ant colony system algorithm, artificial potential field, jump point search algorithm

中图分类号: