[1] 陈彦杰,王耀南,谭建豪,等. 局部环境增量采样的服务机器人路径规划[J]. 仪器仪表学报,2017,38(5):1093-1100. CHEN Yanjie,WANG Yaonan,TAN Jianhao,et al. Incremental sampling path planning for service robotbased on local environments[J]. Chinese Journal of Scientific Instrument,2017,38(5):1093-1100. [2] DIJKSTRA E W. A note on two probles in connexion with graphs[J]. Numerische Mathematics,1959,1(1):269-271. [3] 黄辰,费继友,刘洋,等. 基于动态反馈A*蚁群算法的平滑路径规划方法[J]. 农业机械学报,2017,48(4):34-40. HUANG Chen,FEI Jiyou,LIU Yang,et al. Smooth path planning method based on dynamic feedback A* ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):34-40. [4] KHATIB O. Real-time obstacle avoidance system for manipulators and mobile robots[J]. International Journal of Robotics Research,1986,5(1):90-98. [5] TANG B,ZHANXIA Z,LUO J. A convergence-guaranteed particle swarm optimization method for mobile robot global path planning[J]. Assembly Automation,2017,37(1):114-129. [6] 张原艺,章政,王泉. 基于改进多步长蚁群算法的机器人路径规划[J]. 计算机工程与设计,2018,39(12):237-242,274. ZHANG Yuanyi,ZHANG Zheng,WANG Quan. Robot path planning based on improved multi-step ant colony algorithm[J]. Computer Engineering and Design,2018,39(12):237-242,274. [7] LEE J,KIM D W. An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph[J]. Information Sciences,2016,332:1-18. [8] 夏小云,周育人. 蚁群优化算法的理论研究进展[J]. 智能系统学报,2016,11(1):27-36. XIA Xiaoyun,ZHOU Yuren. Advances in theoretical research of ant colony optimization[J]. CAAI Transactions on Intelligent Systems,2016,11(1):27-36. [9] 罗德林,吴顺祥. 基于势场蚁群算法的机器人路径规划[J]. 系统工程与电子技术,2010,32(6):1277-1280. LUO Delin,WU Shunxiang. Ant colony optimization with potential field heuristic for robot path planning[J]. Systems Engineering and Electronics,2010,32(6):1277-1280. [10] 张强,陈兵奎,刘小雍,等. 基于改进势场蚁群算法的移动机器人最优路径规划[J]. 农业机械学报,2019,50(05):30-39,49. ZHANG Qiang,CHEN Bingkui,LIU Xiaoyong,et al. Ant colony optimization with improved potential field heuristic for robot path planning[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(05):30-39,49. [11] 陈余庆,李桐训,于双和,等. 基于势场蚁群算法的机器人全局路径规划[J]. 大连理工大学学报,2019,59(3):99-105. CHEN Yuqing,LI Tongxun,YU Shuanghe,et al. Robot global path planning based on potential field ant colony algorithm[J]. Journal of Dalian University of Technology,2019,59(3):99-105. [12] 王晓燕,杨乐,张宇,等. 基于改进势场蚁群算法的机器人路径规划[J]. 控制与决策,2018,33(10):50-56. WANG Xiaoyan,YANG Le,ZHANG Yu,et al. Robot path planning based on improved ant colony algorithm with potential field heuristic[J]. Control and Decision,2018,33(10):50-56. [13] 龚星宇,常心坦,贾澎涛,等. 基于蚁群算法的井下救援路径优化方法[J]. 工矿自动化,2018,44(3):76-81. GONG Xingyu,CHANG Xintan,JIA Pengtao,et al. Optimization method for mine rescue path based on ant colony algorithm[J]. Industry and Mine Automation,2018,44(3):76-81. [14] 刘砚菊,代涛,宋建辉. 改进人工势场法的路径规划算法研究[J]. 沈阳理工大学学报,2017,36(1):61-65. LIU Yanju,DAI Tao,SONG Jianhui. Research of path planning algorithm based on improved Artificial Potential Field[J]. Transactions of Shenyang Ligong University,2017,36(1):61-65. |