[1] CHORTOS A,BAO Z N,LIU J,et al. Pursuing prosthetic electronic skin[J]. Nature Material,2016,15(9):937-950. [2] 徐飞,张定国,许恒,等. 电触觉的皮肤神经机理仿真及实验验证[J]. 中国生物医学工程学报,2014,33(1):22-27. XU Fei,ZHANG Dingguo,XU Heng,et al. Simulation and experimental verification of skin nerve mechanism of electric tactile[J]. Chinese Journal of Biomedical Engineering,2014,33(1):22-27. [3] 胡旭辉,石珂,祝佳航,等. 基于力触觉感知与电刺激反馈的灵巧假手[J]. 机械工程学报,2019,55(11):10-18. HU Xuhui,SHI Ke,ZHU Jiahang,et al. Smart prosthetic hand based on force tactile perception and electrical stimulation feedback[J]. Journal of Mechanical Engineering,2019,55(11):10-18. [4] 曹建国,周建辉,缪存孝,等. 电子皮肤触觉传感器研究进展与发展趋势[J]. 哈尔滨工业大学学报,2017,49(1):1-13. CAO Jianguo,ZHOU Jianhui,MIU Cunxiao,et al. Research progress and development trend of electronic skin tactile sensors[J]. Journal of Harbin Institute of Technology,2017,49(1):1-13. [5] PARK M,KIM M S,AHN J H,et al. Recent advances in tactile sensing technology[J]. Micromachines,2018,9(7):321-355. [6] WAN Y,QIU Z,HONG Y,et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Material,2018,4(4):1700586-8. [7] ZHU L F,WANG Y C,MEI D Q,et al. Highly sensitive and flexible tactile sensor based on porous graphene sponges for distributed tactile sensing in monitoring human motions[J]. Journal of Microelectromechanical Systems,2018,28(1):154-163. [8] YOU I,CHOI S E,HWANG H,et al. E-Skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure sensitive selectors[J]. Advanced Functional Material,2018,28(31):1801858. [9] 梁观浩. 分布式柔性触觉传感阵列的设计与力学建模研究[D]. 杭州:浙江大学,2017. LIANG Guanhao. Research on design and mechanical modeling of distributed flexible tactile sensor array[D]. Hangzhou:Zhejiang University,2017. [10] 蔡依晨,黄维,董晓臣. 可穿戴式柔性电子应变传感器[J]. 科学通报,2017,62(7):635-649. CAI Yichen,HUANG Wei,DONG Xiaochen. Wearable flexible electronic strain sensor[J]. Chinese Science Bulletin,2017,62(7):635-649. [11] WAN Y B,WANG Y,GUO C F,et al. Recent progresses on flexible tactile sensors[J]. Materials Today Physics,2017,1:61-73. [12] WU W Z,WEN X,WANG Z L,et al. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science,2013,340(6315):952-957. [13] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11):9533-9557. [14] WANG Y C,WU X,MEI D Q. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping[J]. Sensor and Actuators A:Physical,2019,297:1-13. [15] WU Y,LIU Y,ZHOU Y,et al. A skin-inspired tactile sensor for smart prosthetics[J]. Science Robotics,2018,3(22):eaat0429-9. [16] MANNSFELD S,TEE B,BAO Z N,et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Material,2010,9(10):859-864. [17] LIANG G H,WANG Y C,MEI D Q,et al. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement[J]. Journal of Microelectromechanical Systems,2015,24(5):1510-1519. [18] PANG C,LEE G Y,KIM T I,et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers[J]. Nature Material,2012,11(9):795-801. [19] KANG D,PIKHITSA P V,CHOI Y W,et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature,2014,516(7530):222-226. [20] WANG X D,DONG L,ZHANG H L,et al. Recent progress in electronic skin[J]. Advanced Science,2015,2(10):1500169-21. [21] TAKAHASHI T,TAKEI K,ANDREW G,et al. Carbon nanotube active-matrix backplanes for conformal electronics and sensors[J]. Nano Letters,2011,11(12),5408-13. [22] FUH Y K,WANG B S,TSAI C Y,et al. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array[J]. Scientific Reports,2017,7(1),6759-7. [23] KIM D H,SONG J Z,CHOI W M,et al. Materials and noncoplanar mesh designs forintegrated circuits with linear elastic responses toextreme mechanical deformations[J]. Proceedings of the National Academy of Sciences,2008,105(48):18675-80. [24] WEI H,LIU K,LIU W G,et al. 3D printing of free-standing stretchable electrodes with tunable structure and stretchability[J]. Advanced Engineering Materials,2017,19(11):1700341-6. [25] DENG Z,HU T,LEI Q,et al. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability,self-Healing,adhesiveness,and 3D printability for human motion sensing[J]. ACS Applied Material and Interfaces,2019,11(7):6796-6808. [26] WANG Z Y,GUAN X,HUANG H,et al. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture[J]. Advanced Functional Materials,2019,29(11):1807569-8. [27] LEIGH S J,BRADLEY R J,PURSSELL C P,et al. A simple,low-cost conductive composite material for 3D printing of electronic sensors[J]. PLOS ONE,2012,7(11):e49365-6. [28] AN B,MA Y,LI W B,et al. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing[J]. Chemical Communications,2016,52(73):10948-10951. [29] HENSLEIGH R M,CUI H,OAKDALE J S,et al. Additive manufacturing of complex micro-architected graphene aerogels[J]. Materials Horizons,2018,5:1035-1041. [30] GUO S Z,QIU K Y,MENG F B,et al. 3D Printed stretchable tactile sensors[J]. Advanced Materials,2017,29(27):1701218-8. [31] ZHU Z J,GUO S Z,HIRDLER T,et al. 3D printed functional and biological materials on moving freeform surfaces[J]. Advanced Materials,2018,30(23):1707495-8. [32] MUTH J T,VOGT D M,TRUBY R L,et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials,2014,26(36):6307-6312. [33] BOLEY J,WHITE E L,CHIU G,et al. Direct writing of gallium-indium alloy for stretchable electronics[J]. Advanced Functional Materials,2014,24(23):3501-3507. [34] LEE C,TARBUTTON J A. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications[J]. Smart Materials and Structures,2014,23(9):095044-7. [35] KIM H,TORRES F,WU Y Y,et al. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application[J]. Smart Materials and Structures,2017,26(8):085027-9. [36] HERZOG D,SEYDA V,WYCISK E,et al. Additive manufacturing of metals[J]. Acta Materialia,2016,117:371-392. [37] 王玲,方奥,申皓,等. 3D打印的发展前沿——类脑组织打印[J]. 机械工程学报,2018,54(1):197-204. WANG Lin,FANG Ao,SHEN Hao,et al. The development frontier of 3D printing-brain-like tissue printing[J]. Journal of Mechanical Engineering,2018,54(1):197-204. [38] 刘妍,杨清振,陈小明,等. 3D打印技术制备器官芯片的研究现状[J]. 中国生物医学工程学报,2020,39(1):97-108. LIU Yan,YANG Qingzhen,CHEN Xiaoming,et al. Research status of organ chip preparation by 3D printing technology[J]. Chinese Journal of Biomedical Engineering,2020,39(1):97-108. [39] GRIGORYANL B,PAULSEN S J,CORBETT D C,et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science,2019,364(6439):458-464. [40] QIU K,ZHAO Z,HAGHIASHTIANI G,et al. 3D Printed organ models with physical properties of tissue and integrated sensors[J]. Advanced Materials Technologies,2018,3(3):1700235-9. [41] ALIZADEHGIASHI M,GEVORKIAN A,TEBBE M,et al. 3D-printed microfluidic devices for materials science[J]. Advanced Materials Technologies,2018,3(7):1800068-8. [42] BHATTACHARJEE N,URRIOS A,KANG S,et al. The upcoming 3D-printing revolution in microfluidics[J]. Lab on a Chip,2016,16(10):1720-1742. [43] HO C M B,NG S H,LI K H H,et al. 3D printed microfluidics for biological applications[J]. Lab on a Chip,2015,15(18):3627-3637. [44] CHRIST J F,ALIHEIDARI N,AMELI A,et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design,2017,131:394-401. [45] ZHANG D,CHI B,LI B,et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals,2016,217:79-86. [46] VALENTINE A D,BUSBEE T A,BOLEY J W,et al. Hybrid 3D printing of soft electronics[J]. Advanced Materials,2017,29(40):1703817-8. [47] 方浩博,基于数字光处理技术的3D打印设备研制[D].北京:北京工业大学,2016. FANG Haobo. 3D printer based on digital light processing technology[D]. Beijing:Beijing University of Technology,2016. [48] PATEL D K,SAKHAEI A H,LAYANI M,et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing[J]. Advanced Materials,2017,29(15):1606000-8. [49] ZAREK M,LAYANI M,COOPERSTEIN I,et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials,2016,28(22):4449-4454. [50] LIU S,LI L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor[J]. ACS Applied Materials & Interfaces,2017,9(31):26429-26437. [51] GONG S,SCHWALB W,WANG Y,et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications,2014,5:3132-8. [52] SCHWARTZ G,TEE B C K,MEI J,et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013,4:1859-8. [53] CHEN S,HUANG T,ZUO H,et al. A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for searable electronics[J]. Advanced Functional Materials,2018,28(46):1805108-8. [54] YANG Y,ZHANG H L,LIN Z-H,et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system[J]. ACS Nano,2013,7(10):9213-9222. [55] YAMAZAKI H,NISHIYAMA M,WATANABE K,et al. Tactile sensing for object identification based on hetero-core fiber optics[J]. Sensors and Actuators A,2016,247:98-104. [56] LIM S,SON D,KIM J,et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials, 2015,25(3):375-383. [57] SCOTT M,MUELLER J,VISSER C,et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature,2019,575(7782):330-335. [58] MU X,BERTRON T,DUNN C,et al. Porous polymeric materials by 3D printing of photocurable resin[J]. Materials Horizons,2017,4(3):442-449. [59] MU Q,WANG L,Dunn C,et al. Digital light processing 3D printing of conductive complex structures[J]. Additive Manufacturing,2017,18:74-83. [60] HAN D,YANG C,FANG N,et al. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control[J]. Additive Manufacturing,2019,27:606-615. [61] KUANG X,CHEN K,DUNN C,et al,3D printing of highly stretchable,shape-memory,and self-healing elastomer toward novel 4D printing[J]. ACS Applied Materials & Interfaces,2018,10(8):7381-7388. [62] 罗毅辉,彭倩倩,朱宇超,等. 喷印柔性压力传感器试验研究[J]. 机械工程学报,2019,55(11):90-97. LUO Yihui,PENG Qianqian,ZHU Yuchao,et al. Experimental research on the flexible pressure sensor for printing[J]. Journal of Mechanical Engineering,2019, 55(11):90-97. [63] 罗斌,陈花玲,徐雪杰,等. 电活性聚合物PVC凝胶材料的3D直写打印工艺[J]. 机械工程学报,2019,55(11):76-82. LUO Bin,CHEN Hualin,XU Xuejie,et al. 3D direct writing printing process of electroactive polymer PVC gel material[J]. Journal of Mechanical Engineering,2019,55(11):76-82. |