• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (4): 104-114.doi: 10.3901/JME.2020.04.104

• 运载工程 • 上一篇    下一篇

扫码分享

基于μ综合方法的智能车辆人机共驾的鲁棒横向控制

谢有浩1,2, 魏振亚3, 赵林峰3, 王家恩3, 陈无畏3   

  1. 1. 滁州学院机械与电气工程学院 滁州 239000;
    2. 安徽猎豹汽车有限公司 滁州 239064;
    3. 合肥工业大学汽车与交通工程学院 合肥 230009
  • 收稿日期:2019-03-16 修回日期:2019-10-16 出版日期:2020-02-20 发布日期:2020-04-23
  • 通讯作者: 魏振亚(通信作者),男,1988年出生,博士,硕士研究生导师。主要研究方向为汽车动力学与技术。E-mail:18655186161@163.com
  • 作者简介:谢有浩,男,1975年出生,教授级高级工程师。主要研究方向为汽车智能化和制造技术。E-mail:cfyzxyh@163.com
  • 基金资助:
    安徽省科技重大专项(17030901060)和国家自然科学基金(51675151,U1564201)资助项目。

Robust Lateral Control of Intelligent Vehicle in the Human-machine Sharing Based on μ-synthesis

XIE Youhao1,2, WEI Zhenya3, ZHAO Linfeng3, WANG Jiaen3, CHEN Wuwei3   

  1. 1. College of Mechanical and Electric Engineering, Chuzhou University, Chuzhou 239000;
    2. Anhui Leopaard Automobile Co., Ltd., Chuzhou 239064;
    3. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009
  • Received:2019-03-16 Revised:2019-10-16 Online:2020-02-20 Published:2020-04-23

摘要: 在大多数智能车辆横向控制研究中,存在未考虑驾驶员误操作的影响这一不足。以人机共驾控制问题为研究对象,将驾驶员操纵转矩和车辆状态作为控制器输入。首先,建立转向系统和车辆二自由度模型,在车辆局部坐标系中,根据预瞄点曲率信息实现虚拟路径的规划,基于车辆状态和目标车道设计上层期望横摆角速度控制器。其次,将侧向风和驾驶员误操作作为干扰输入,以车辆状态中的横摆角速度、转向盘转角、转矩传感器测量值和期望横摆角速度作为控制器反馈变量,考虑车辆参数摄动及传感器测量噪声等影响,设计下层μ综合控制器,使车辆跟踪期望横摆角速度和期望的横向位移,确保车辆能稳定地跟踪目标路径。最后,进行自动换道和车道保持仿真,并基于Carsim/Labview的硬件在环试验台上进行硬件在环试验,仿真和试验结果均表明,提出的横向控制方法能辅助驾驶员更好的跟踪目标车道,且对侧向风和驾驶员误操作均有很好的干扰抑制性能。

关键词: 智能汽车, 横向控制, 人机共享控制, μ综合控制

Abstract: In most intelligent vehicle lateral control studies, there is a shortcoming that the influence of driver's misoperation is not taken into account. The human-machine sharing control problem is taken as the research object. The driver steering torque and vehicle state are considered as inputs of the controller. Firstly, the steering system and 2-DOF vehicle model is established, and in the vehicle local coordinate system, a virtual path planning is realized according to the curvature information of the preview point. And an upper desired yaw rate controller is designed based on vehicle statue and the desired lane. Secondly, a lower μ-synthesis robust controller considering vehicle parameter uncertainty and sensor noise is designed to make vehicle tracking the desired yaw rate and the desired lateral position, ensure vehicle tracking the target path stably, in which crosswind and driver's misoperation are considered as disturbance input, and yaw rate, steering angle, steering torque and desired yaw rate are considered as feedback variables. Finally, lane changing and lane keeping simulation is carried out, and the HIL test is implemented on the HIL test bench based on CarSim/LabVIEW, the simulation and test results show that the proposed lateral control algorithm not only assist driver to control vehicle tracking desired lane more accurately but also can restrain the crosswind and prevent driver's misoperation.

Key words: intelligent vehicle, lateral control, human-machine sharing, μ integrated control

中图分类号: