• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (2): 115-123.doi: 10.3901/JME.2017.02.115

• 运载工程 • 上一篇    下一篇

扫码分享

商用车横向稳定性优化控制联合仿真分析*

杨炜, 魏朗, 刘晶郁   

  1. 长安大学汽车学院 西安 710064
  • 出版日期:2017-01-20 发布日期:2017-01-20
  • 作者简介:

    杨炜,男,1985年出生,博士,讲师。主要研究方向为车辆主动安全控制,智能车辆控制。

    E-mail:y850408w@163.com

    魏朗(通信作者),男,1957年出生,博士,教授。主要研究方向为道路交通安全,汽车安全技术。

    E-mail:q_ch1@chd.edu.cn

  • 基金资助:
    * 国家自然科学基金(51278062)和中央高校基本科研业务专项资金(310822161013)资助项目; 20160629收到初稿,20161012收到修改稿;

Co-simulation Analysis of Commercial Vehicle Lateral Stability Optimization Control

YANG Wei, WEI Lang, LIU Jingyu   

  1. School of Automobile, Chang’an University, Xi’an 710064
  • Online:2017-01-20 Published:2017-01-20

摘要:

提出一种基于粒子群优化与径向基(Radical basis function, RBF)神经网络优化算法的商用车横向稳定性优化控制策略,采用上、下双层控制模式,上层控制器以横摆角速度与质心侧偏角为控制目标,依据车辆行驶工况的反馈信息,利用粒子群优化(Particle swarm optimization, PSO)算法对模糊控制器中的比例因子参数实施动态优化,实现对前轮附加转角和横摆力矩的控制。下层控制器采用RBF神经网络优化制动力分配,通过对横摆角速度偏差的自适应学习,结合滑移率控制器实时优化分配左、右前轮的制动器制动力并修正前轮转角。基于搭建的TruckSim与Matlab/Simulink联合仿真环境,选取典型试验工况进行车辆横向稳定性仿真分析。研究结果表明,与传统的电子稳定控制系统(Electronic stability control, ESC)控制策略相比较,优化控制后车辆的横摆角速度、质心侧偏角以及侧向加速度等动态响应指标均满足控制要求,并且实际行驶轨迹与目标规划路径之间具有良好的跟随性,有效改善了低附着路面行驶条件下商用车的横向稳定性。

关键词: TruckSim, 横向控制, 径向基神经网络, 粒子群优化, 联合仿真, 商用车, 汽车工程

Abstract: A commercial vehicle lateral stability optimization control strategy based on particle swarm optimization and neural network optimization algorithm is proposed, and upper and lower double control mode is designed, yaw rate velocity and vehicle side slip angle are taken by upper controller as the control target, according to the feedback information of vehicle driving condition, scale factor parameters of fuzzy controller is optimized by particle swarm optimization algorithm dynamically, and the front wheel additional steering angle and yawing movement control is finished. The lower controller utilizes RBF neural network algorithm to make vehicle yaw velocity deviation adaptive learning, and optimizes the allocation of left and right front wheel brake force and corrects front wheel steering angle. Vehicle lateral stability simulation analysis is conducted by typical test conditions under TruckSim and Matlab/Simulink co-simulation environment. The experiment results show that compared with traditional electronic stability control(ESC) strategy, after optimization control the dynamic response values of yaw rate velocity, vehicle side slip angle and lateral acceleration can meet the requirement, and perform well in tracking the target path, comprehensive improve the lateral stability of vehicle under low adhesion road driving conditions.

Key words: commercial vehicle, lateral control, particle swarm optimization(PSO), radical basis, automobile engineering