• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 55-66.doi: 10.3901/JME.2025.04.055

• 仪器科学与技术 • 上一篇    

扫码分享

基于多层特征融合目标检测网络的超声全聚焦钢板焊缝缺陷自动检测研究

秦飞红1, 袁懋诞1, 祝端阳1, 刘晓睿2, 李明3, 纪轩荣1   

  1. 1. 广东工业大学省部共建精密电子制造技术与装备国家重点实验室 广州 510006;
    2. 苏州热工研究院有限公司 苏州 215004;
    3. 中广核检测技术有限公司 深圳 518026
  • 收稿日期:2024-02-17 修回日期:2024-09-06 发布日期:2025-04-14
  • 作者简介:秦飞红,男,1997年出生。主要研究方向为深度学习在超声检测中的应用。E-mail:Atanis-Qin@outlook.com
    袁懋诞(通信作者),男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为超声无损评价。E-mail:mdyuan@gdut.edu.cn
  • 基金资助:
    广东省基础与应用基础研究基金(2022A1515240040)、国家自然科学基金(51975131,U2133213)和广东省“珠江人才计划”引进创新创业团队(2016ZT06G375)资助项目。

Automatic Weld Defect Detection in Steel Plates Based on Ultrasonic Total Focusing Method and Multi-layer Feature Fusion Target Detection Network

QIN Feihong1, YUAN Maodan1, ZHU Duanyang1, LIU Xiaorui2, LI Ming3, JI Xuanrong1   

  1. 1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006;
    2. Suzhou Nuclear Power Research Institute, Suzhou 215004;
    3. CGN Inspection Technology of Company, Shenzhen 518026
  • Received:2024-02-17 Revised:2024-09-06 Published:2025-04-14

摘要: 金属焊接结构的缺陷会导致关键设备在服役过程中产生严重危害,传统的缺陷识别主要以人工检测为主,但实际检测数据量庞大,而且缺陷形状和大小各异,导致检测结果容易受各种因素影响。提出基于多层特征融合目标检测网络对钢板焊缝的超声全聚焦图像进行智能识别。由于超声图像中缺陷的像素占比低且存在较多噪声和伪影等,使用具有特征复用且参数更少的Dense Net(Dense convolutional network)换原有的VGG(Visual geometry group)主干网络以优化模型的计算资源和速度。同时嵌入多层网络融合模块,将上下相邻网络特征图进行融合,充分结合大尺寸特征与小尺寸特征,提高模型的检测能力。此外,还嵌入空间注意力机制来增强缺陷信息并抑制背景噪声,最后将原有SSD(Single shot multibox detector)中的交并比(Intersection over union,IoU)非极大值抑制算法替换为距离交并比(Distance-IoU,DIoU),以更好地检测缺陷图像中间距较小的缺陷。利用仿真和试验获取典型焊缝缺陷的超声全聚焦数据集进行模型测试,结果表明,该模型比原有SSD模型平均AP值(Mean average precision,mAP)提高了10.45%,检测帧率(Frames per second,FPS)提高了17%。提出的多层特征融合目标检测网络可以用于大批量焊接钢结构超声全聚焦检测结果的快速、准确、自动识别。

关键词: 全聚焦检测, 深度学习, 焊缝缺陷, 特征融合

Abstract: Defects in metal welding structures can cause serious harm to key equipment during service. Traditional defect identification is mainly based on manual inspection. However, the amount of actual inspection data is huge, and defects vary in shape and size, making the inspection results susceptible to various influencing factors. A multi-layer feature fusion target detection network is proposed to intelligently identify the ultrasonic total-focusing image of steel plate welds. Since the proportion of defective pixels in ultrasound images is low and there are many noises and artifacts, the original VGG backbone network is replaced with a dense convolutional network with feature reuse and fewer parameters to optimize the computing resources and speed of the model. At the same time, a multi-layer network fusion module is embedded to fuse the upper and lower adjacent network feature maps, fully combining large-size features and small-size features to improve the detection ability of the model. In addition, a spatial attention mechanism is embedded to enhance defect information and suppress background noise. Finally, the intersection over union ratio non-maximum suppression algorithm in the original SSD is replaced with a distance intersection over union ratio to better detect closely spaced defects in using simulation and experiments to obtain the ultrasonic total-focusing data set of typical weld defects for model testing, the results show that the average accuracy of the model is 10.45% higher than the original SSD model, and the detection frame rate is increased by 17%. The proposed multi-layer feature fusion target detection network can be used for fast, accurate and automatic identification of large-volume ultrasonic total-focusing inspection results of welded steel structures.

Key words: total focusing method, deep learning, weld defect, feature fusion

中图分类号: