• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 229-238.doi: 10.3901/JME.2025.04.229

• 运载工程 • 上一篇    

扫码分享

高速列车撒砂装置振动特性及疲劳损伤研究

王文静1, 董子钰1, 代森1, 李广全2, 张振先2   

  1. 1. 北京交通大学载运工具先进制造与测控技术教育部重点实验室 北京 100044;
    2. 中车青岛四方机车车辆股份有限公司 青岛 266111
  • 收稿日期:2024-03-01 修回日期:2024-10-11 发布日期:2025-04-14
  • 作者简介:王文静,女,1976年出生,博士,教授,博士研究生导师。主要研究方向为结构疲劳强度及可靠性。E-mail:wjwang@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52075032)、高速铁路系统试验国家工程实验室高速轮轨关系实验室开放合作创新基金(2021YJ269)和中国国家铁路集团有限公司科技研究开发计划课题(K2022J003)资助项目。

Research on Vibration Characteristics and Fatigue Damage of Sanding Device of High Speed Train

WANG Wenjing1, DONG Ziyu1, DAI Sen1, LI Guangquan2, ZHANG Zhenxian2   

  1. 1. Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Ministry of Education, Beijing Jiaotong University, Beijing 100044;
    2. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111
  • Received:2024-03-01 Revised:2024-10-11 Published:2025-04-14

摘要: 随着列车运营速度的不断提升,连接在高速列车构架端部的撒砂装置在服役期间受载复杂、振动剧烈,易发生振动疲劳失效。为研究撒砂装置振动疲劳损伤,利用ANSYS软件建立有限元模型,分析撒砂装置及构架端部的模态特征和振动传递规律;结合Dirlik方法和Miner线性累积损伤理论,仿真分析标准加速度谱和线路加速度谱激励下的结构损伤,并进行台架试验验证;建立振动疲劳仿真流程,对结构进行1 500万km损伤预测。结果表明,撒砂装置一阶模态频率计算值与台架扫频试验一阶主频接近,误差为2%。由构架端部到撒砂装置,单位加速度激励下位移响应明显被放大,振动加剧;两种加速度谱下,仿真与台架试验得到的疲劳损伤误差小于20%,损伤较大位置分布在构架端部轴箱弹簧帽筒外侧焊缝处和撒砂装置上部圆弧母材处;线路加速度谱下结构1 500万km损伤最大值为0.71,远高于标准加速度谱。在设计和评估转向架构架端部及连接部件时,应充分考虑线路条件和结构模态影响,以避免仅依据标准设计和评估带来寿命不足的问题发生。

关键词: 撒砂装置, 随机振动, 功率谱密度, 频域特征, 疲劳损伤

Abstract: With the continuous improvement of train operating speed, the sanding device connected at the end of the bogie frame of a high-speed train is subjected to complex loads and vibrates violently during service, which easily leads to vibration fatigue failure. To study the vibration fatigue damage of the sanding device, the finite element model is established by ANSYS software to analyse the modal characteristics and vibration transfer law of the sanding device and the frame end. Combined with the Dirlik method and Miner linear cumulative damage law, the structural damage under the standard acceleration spectrum and line acceleration spectrum is simulated, and verified by bench tests. The vibration fatigue damage calculation process is established to predict the damage of 15 million km. The results show that the first-order modal frequency of the sanding device is close to the first-order dominant frequency of the bench sweep test, and the error is 2%. From the frame end to the sanding device, the displacement response under unit acceleration excitation is magnified and the vibration is intensified. Under two kinds of acceleration spectrum, the fatigue damage error obtained by simulation and bench tests is less than 20%, and the larger damage position is mainly distributed at the outer welding seam of the axle box spring cap barrel at the frame end and the circular base metal of the upper part of the sanding device. The maximum damage of the structure at 15 million km under the line acceleration spectrum is 0.71, which is much higher than the standard acceleration spectrum. Therefore, when designing and evaluating the end and connecting parts of the bogie frame, the influence of line conditions and structural modes should be fully considered to avoid the occurrence of insufficient service life caused by standards design and evaluation only.

Key words: sanding device, random vibration, power spectral density, frequency domain characteristics, fatigue damage

中图分类号: