• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 440-448.doi: 10.3901/JME.2025.03.440

• 数字化设计与制造 • 上一篇    

扫码分享

基于SERepVGG-A2的轻量化卷积神经网络在熔池状态识别中的应用

刘翰儒1,2, 陈桂映1, 许泽林1, 彭世通1, 郭嘉楠1, 刘伟嵬3, 王奉涛1   

  1. 1. 汕头大学智能制造技术教育部重点实验室 汕头 515063;
    2. 中佛罗里达大学机械与航空航天工程系 奥兰多 FL32816 美国;
    3. 大连理工大学机械工程学院 大连 116024
  • 收稿日期:2024-02-18 修回日期:2024-08-28 发布日期:2025-03-12
  • 作者简介:刘翰儒,男,1997年出生。主要研究方向为增材制造缺陷智能诊断识别。E-mail:Hanru.Liu@knights.ucf.edu;陈桂映,女,1998年出生,硕士研究生。主要研究方向为增材制造缺陷智能诊断识别。E-mail:22gychen@stu.edu.cn;王奉涛(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为增材制造过程智能监测与质量控制、机电系统智能运维与健康管理。E-mail:ftwang@stu.edu.cn
  • 基金资助:
    广东省基础与应用基础研究基金(2021A1515011989、2023A1515011164)、广东省普通高校创新团队(2020KCXTD012)和国家自然科学基金(52305544、52205110)资助项目。

Application of Lightweight Convolutional Neural Network Method Based on SERepVGG-A2 in Melt Pool State Recognition

LIU Hanru1,2, CHEN Guiying1, XU Zelin1, PENG Shitong1, GUO Jianan1, LIU Weiwei3, WANG Fengtao1   

  1. 1. Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou 515063;
    2. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando FL 32816 USA;
    3. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024
  • Received:2024-02-18 Revised:2024-08-28 Published:2025-03-12

摘要: 针对传统卷积神经网络(Convolutional neural networks, CNN)应用于熔池状态识别时,浅层卷积神经网络无法有效提取熔池特征,而深层卷积神经网络又存在参数量大和冗余度高的问题,提出一种轻量化卷积神经网络(SERepVGG-A2)熔池状态识别方法。首先针对原始熔池图片存在大量无用背景区域的问题,对熔池图片进行感兴趣区域(Region of interest,ROI)提取优化了数据集;接着为了保证模型特征提取能力并同时降低模型的复杂度,提出一种结合残差结构、注意力机制和结构参数重组化的轻量化卷积神经网络模型来识别熔池状态。以Ti-10Mo钛合金定向能量沉积过程中的在线熔池图像数据验证所提方法,结果表明所提的轻量化网络模型不仅能够有效地识别熔池状态,而且比传统的CNN方法具有更高的熔池识别效率。

关键词: 熔池状态识别, 卷积神经网络, 深度学习, 注意力机制, 结构参数重组化

Abstract: A Quasi-Aiming at the problem that the traditional convolutional neural network is applied to the state recognition of the molten pool, the shallow convolutional neural network cannot effectively extract the characteristics of the molten pool, and the deep convolutional neural network has the problems of large number of parameters and high redundancy. A lightweight convolutional neural network (SERepVGG-A2) method is quantified. Firstly, in order to solve the problem of a large number of useless background areas in the original melt pool image, the region of interest (ROI) extraction of the melt pool image is performed to optimize the data set; then, in order to ensure the model feature extraction ability and reduce the complexity of the model, a lightweight convolutional neural network model combining residual structure, attention mechanism and structural parameter reorganization is proposed to identify the molten pool state. The proposed method is verified and illustrated with the online molten pool data of Ti-10Mo titanium alloy in the directed energy deposition process. The results show that the proposed lightweight network model can not only effectively identify the molten pool characteristics according to the molten pool signal, but also it has higher melting pool identification efficiency than traditional CNN methods.

Key words: melting pool state recognition, convolutional neural network, deep learning, attention mechanism, structural parameter reorganization

中图分类号: