• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 36-46.doi: 10.3901/JME.2025.22.036

• 仪器科学与技术 • 上一篇    

扫码分享

永磁球型电机目标方位的旋转磁矢量补偿控制

张永顺1,2, 王莉2, 吴振华2, 刘高仁2   

  1. 1. 广东白云学院智能制造工程学院 广州 510450;
    2. 大连理工大学机械工程学院 大连 116024
  • 收稿日期:2024-12-03 修回日期:2025-05-20 发布日期:2026-01-10
  • 作者简介:张永顺(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为机器人机电一体化技术等。E-mail:zyshun@dlut.edu.cn
    王莉,女,1999年出生,硕士研究生。主要研究方向为电机轨迹控制。E-mail:dllgliwang@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62173059)。

Magnetic Vector Compensation Control for Desired Target Orientation of Permanent Magnet Spherical Motor

ZHANG Yongshun1,2, WANG Li2, WU Zhenhua2, LIU Gaoren2   

  1. 1. College of Intelligent Manufacture Engineering, Guangdong Baiyun University, Guangzhou 510450;
    2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024
  • Received:2024-12-03 Revised:2025-05-20 Published:2026-01-10

摘要: 为了解决永磁球型电机电磁结构复杂、控制变量冗余、磁矩奇异问题,依据永磁体转子轴线始终转向磁场旋转轴线的旋转定轴效应,以三轴正交组合线圈为定子,研制一种内置永磁体转子万向随动机构为主体的二自由度永磁球型电机。针对电机负载会导致磁场旋转轴线与电机输出端同轴的永磁体转子轴线产生方位偏差现象,提出通过磁矢量方位补偿实现负载电机输出端逼近期望目标方位轨迹的驱动控制方法,具体采用磁场旋转轴线侧摆、俯仰角为独立控制变量的三相电流公式叠加旋转磁场,建立与磁场旋转轴线补偿方位参量和电机目标方位参量相关的旋转定轴磁矩模型和转差角模型,实现侧摆、俯仰磁矩分量解耦。鉴于平衡点永磁体转子具有陀螺稳定性,在期望目标方位轨迹的每个平衡控制点可忽略系统惯性力矩并建立电机力矩静态平衡方程,最终求得磁矢量补偿方位轨迹,解决驱动电流解析求解难题。试验表明电机运动轨迹控制精度良好,实现了电流与磁矩的一一对应,为实现永磁球型电机的精确控制研究奠定了基础。

关键词: 永磁球型电机, 旋转定轴磁矩模型, 转差角模型, 电机静力矩平衡, 磁矢量补偿方位

Abstract: For solving the problems of complex electromagnetic structure, redundant control variables and magnetic torque singularity of permanent magnet spherical motor, according to the rotational coaxial effect of the permanent magnet rotor, in which whose axis always tends to rotate toward the rotational axis of the rotating magnetic field, using the three-axis orthogonal combination coil as the stator, a two-degree-of-freedom permanent magnet spherical motor mainly composed of universal follow-up mechanism with built-in permanent magnet rotor is developed. Aiming at the phenomenon in which the payload generates the orientation deviation between the rotating axis of the magnetic field and the axis of the permanent magnet rotor coaxial with the output end of the motor, an accurate drive and control method for approaching the trace of the desired target orientation of the output end of the motor with payload is proposed by magnetic vector orientation compensation. Specifically, the three-phase current formula with the pitch and yaw angle of the rotating axis of the magnetic field as the independent control variables is used to superimpose the rotating magnetic field, the rotational coaxial magnetic moment model and the slip angle model related to the compensation orientation parameter of the field rotation axis and the target orientation parameter of the motor are derived, achieving the decoupling of the yaw and pitch magnetic moment components. In view of the fact that permanent magnet rotor at the balance point has gyro stability, by ignoring the inertial force of the system, the static torque balance equation of the motor is established at each balance control point of the desired target orientation, and compensation orientation trajectory of the magnetic vector is obtained, as a result, the analytic solution of the drive currents correspondence to magnetic moments each to each is achieved, which lays a foundation for accurate drive and control of permanent magnet spherical motor.

Key words: permanent magnet spherical motor, rotational coaxial magnetic moment modeling, slip angle modeling, static torque balance equation, magnetic vector orientation compensation

中图分类号: