机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 121-147.doi: 10.3901/JME.2025.15.121
• 综述 • 上一篇
陶永1, 万嘉昊1, 王田苗1, 熊友军2, 王柏村3, 张文博4, 邓昌义5, 陶雨1, 杨赓3, 魏洪兴1
收稿日期:
2024-10-31
修回日期:
2024-12-26
发布日期:
2025-09-28
作者简介:
陶永,男,1979年出生,博士,副教授,博士研究生导师。主要研究方向为智能机器人控制与集成应用、嵌入式机电一体化控制、航空智能制造等。E-mail:taoy@buaa.edu.cn;万嘉昊,男,1999年出生,博士研究生。主要研究方向为机器人人机交互控制技术、双臂机器人控制等。E-mail:zb2307118@buaa.edu.cn;王田苗,男,1960年出生,博士,教授,博士研究生导师。主要研究方向为先进机器人理论与技术,仿生结构、医疗机器人、服务机器人等。E-mail:itm@buaa.edu.cn;熊友军,男,1978年出生,博士。主要研究方向为人形机器人核心技术开发、机器人遥操作等。E-mail:rick@x-humanoid.com;王柏村,男,1990年出生,博士,研究员,博士研究生导师。主要研究方向为人-信息-物理系统、智能制造、系统优化与管理等。E-mail:baicunw@zju.edu.cn;张文博,男,1986年出生,硕士,高级工程师。主要研究方向为机器人、智能制造、基础软件等产业政策及关键技术研究。E-mail:zwb@ciecc.com.cn;邓昌义,男,1989年出生,高级工程师。主要研究方向智能机器人、嵌入式工业软件、工业操作系统等。E-mail:dengchangyi@sict.ac.cn;陶雨,男,2001年出生,硕士研究生。主要研究方向为机器人自适应抓取与具身技能模型等。E-mail:taoyuty2020@163.com;杨赓,男,1980年出生,博士,研究员,博士研究生导师。主要研究方向为人-信息-物理系统、柔性电子、人机交互等。E-mail:yanggeng@zju.edu.cn;魏洪兴(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为机器人模块化技术、嵌入式技术、机器人操作系统等。E-mail:weihongxing@buaa.edu.cn
基金资助:
TAO Yong1, WAN Jiahao1, WANG Tianmiao1, XIONG Youjun2, WANG Baicun3, ZHANG Wenbo4, DENG Changyi5, TAO Yu1, YANG Geng3, WEI Hongxing1
Received:
2024-10-31
Revised:
2024-12-26
Published:
2025-09-28
摘要: 当前人形机器人技术正在加速演进,已成为全球科技创新与产业升级的新高地。在“人本智造”理念下,人形机器人作为具身智能的重要代表,具有广阔的发展前景。针对人形机器人技术多学科交叉、体系复杂与高度集成的特点,结合该领域的最新研究成果与发展动态,综述人形机器人的技术现状及发展趋势。首先,介绍人形机器人的定义与发展历程,从技术水平、产业格局、政策支持等方面描述国内外现状,对比总结典型技术发展特征与产品特色。重点剖析了核心零部件、环境感知与场景理解、步态控制与灵巧操作、具身智能与大模型、人机共融与交互、操作系统与工具链等关键核心技术,讨论其实现途径与当前研究进展。进而,介绍人形机器人在特殊服役环境、智能制造、家庭及社会服务等领域的典型应用,并探讨其在新兴应用领域的拓展潜力。进一步,围绕技术瓶颈和应用难题,分析当前人形机器人发展面临的主要挑战。最后,针对以人形机器人为代表的具身智能在多模态垂直大模型、高算力仿真训练平台以及安全与伦理等方面的发展趋势进行了展望。希望在总结把握人形机器人前沿技术发展动态的同时,为相关研究人士提供参考与启发,助力推动我国人形机器人技术进步与产业化发展。
中图分类号:
陶永, 万嘉昊, 王田苗, 熊友军, 王柏村, 张文博, 邓昌义, 陶雨, 杨赓, 魏洪兴. 构建具身智能新范式:人形机器人技术现状及发展趋势综述[J]. 机械工程学报, 2025, 61(15): 121-147.
TAO Yong, WAN Jiahao, WANG Tianmiao, XIONG Youjun, WANG Baicun, ZHANG Wenbo, DENG Changyi, TAO Yu, YANG Geng, WEI Hongxing. Establishing a New Paradigm of Embodied Intelligence: A Review of the Current Status and Development Trends in Humanoid Robot Technology[J]. Journal of Mechanical Engineering, 2025, 61(15): 121-147.
[1] ADAMS B,BREAZEAL C,BROOKS R A,et al.Humanoid robots:A new kind of tool[J]. IEEE Intelligent Systems and Their Applications,2000,15(4):25-31. [2] 中华人民共和国工业和信息化部.人形机器人创新发展指导意见[A/OL].(2023-11-02)[2024-09-20]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2023/art_48fe01d562644aedb7ea3f4256df8190.html.Ministry of Industry and Information Technology of China.Guidance for innovative development of humanoid robots[A/OL].(2023-11-02)[2024-09-20]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2023/art_48fe01d562644aedb7ea3f4256df8190.html. [3] CAPOLEI M C,ANDERSEN N A,LUND H H,et al. A cerebellar internal models control architecture for online sensorimotor adaptation of a humanoid robot acting in a dynamic environment[J]. IEEE Robotics and Automation Letters,2019,5(1):80-87. [4] STASSE O,FLAYOLS T. An overview of humanoid robots technologies[J]. Biomechanics of Anthropomorphic Systems,2019:281-310. [5] WANG D,SHARMA A. Research on target recognition and mobile job control of humanoid robot based on km34z256 for industrial applications[J]. International Journal of Intelligent Computing and Cybernetics,2021,14(2):303-319. [6] YAM K C,BIGMAN Y,GRAY K. Reducing the uncanny valley by dehumanizing humanoid robots[J]. Computers in Human Behavior,2021,125:106945. [7] ZHANG H, LI Y, ZHANG S, et al. Artificial intelligence-enhanced digital twin systems engineering towards the industrial metaverse in the era of industry5.0[J]. Chinese Journal of Mechanical Engineering,2025,38(1):40. [8] MASUYA K,AYUSAWA K. A review of state estimation of humanoid robot targeting the center of mass,base kinematics,and external wrench[J]. Advanced Robotics,2020,34(21-22):1380-1389. [9] AJOUDANI A,ZANCHETTIN A M,IVALDI S,et al.Progress and prospects of the human-robot collaboration[J]. Autonomous robots,2018,42:957-975. [10] BEER J M,FISK A D,ROGERS W A. Toward a framework for levels of robot autonomy in human-robot interaction[J]. Journal of Human-Robot Interaction,2014,3(2):74. [11] HASHIMOTO K. Mechanics of humanoid robot[J].Advanced Robotics,2020,34(21-22):1390-1397. [12] LIU C,ZHANG T,ZHANG C,et al. Foot placement compensator design for humanoid walking based on discrete control lyapunov function[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,51(4):2332-2341. [13] ALMEIDA L,SANTOS V,FERREIRA J. Enhancement of humanoid robot locomotion on slippery floors using an adaptive controller[J]. Robotica,2024,42(4):1055-1073. [14] YU J,ZHANG S,WANG A,et al. Humanoid control of lower limb exoskeleton robot based on human gait data with sliding mode neural network[J]. CAAI Transactions on Intelligence Technology,2022,7(4):606-616. [15] JÁNOŠR,SUKOP M,SEMJON J,et al. Stability and dynamic walk control of humanoid robot for robot soccer player[J]. Machines,2022,10(6):463. [16] ZHONG Q,LI Y,ZHENG C,et al. Humanoid robot cooperative motion control based on optimal parameterization[J]. Frontiers in Neurorobotics,2021,15:699820. [17] ZHOU L,LI T,LIU Z,et al. An efficient gait-generating method for electrical quadruped robot based on humanoid power planning approach[J]. Journal of Bionic Engineering,2021,18:1463-1474. [18] ISHIGURO Y,MAKABE T,NAGAMATSU Y,et al.Bilateral humanoid teleoperation system using whole-body exoskeleton cockpit tablis[J]. IEEE Robotics and Automation Letters,2020,5(4):6419-6426. [19] ZHANG H,LIU L Z,XIE H,et al. Deep learning-based robot vision:High-end tools for smart manufacturing[J].IEEE Instrumentation&Measurement Magazine,2022,25(2):27-35. [20] OBAIGBENA A,LOTTU O A,UGWUANYI E D,et al.AI and human-robot interaction:A review of recent advances and challenges[J]. GSC Advanced Research and Reviews,2024,18(2):321-330. [21] DARVISH K,PENCO L,RAMOS J,et al. Teleoperation of humanoid robots:A survey[J]. IEEE Transactions on Robotics,2023,39(3):1706-1727. [22] KAHRAMAN C,DEVECI M,BOLTÜRK E,et al. Fuzzy controlled humanoid robots:A literature review[J].Robotics and Autonomous Systems,2020,134:103643. [23] SAEEDVAND S,JAFARI M,AGHDASI H S,et al. A comprehensive survey on humanoid robot development[J].The Knowledge Engineering Review,2019,34:e20. [24] INSIGHTS F B. Humanoid robot market size,share and industry analysis[R/OL]. Beijing:Fortune Business Insights.(2024-10-07). https://www.fortunebusinessinsights. com/zh/humanoid-robots-market-110188. [25] 赛迪研究院. 2024年中国人形机器人产业生态发展研究[R/OL].北京:赛迪研究院.(2024-04-26).https://www.ccidgroup.com/info/1155/39693.htm.Saidi Research Institute. 2024 Research on the ecological development of Chinese humanoid robot industry[R/OL].Beijing:Saidi Research.(2024-04-26).https://www.ccidgroup.com/info/1155/39693.htm. [26] 深企投. 2024年人形机器人行业研究报告[R/OL].深圳:深企投产业研究院.(2024-05-06). https://reportify-1252068037.cos.ap-beijing.myqcloud.com/media/producti on/.Shen Zhen Investment. 2024 humanoid robot industry research report[R/OL]. Shenzhen:Shenzhen Investment Industry Research Institute.(2024-05-06). https://reportify-1252068037.cos.ap-beijing.myqcloud.com/medi a/production/. [27] 吴伟国.面向作业与人工智能的仿人机器人研究进展[J].哈尔滨工业大学学报,2015,47(7):1-19.WU Weiguo. Research progress of humanoid robots for mobile operation and artificial intelligence[J]. Journal of Harbin Institute of Technology,2015,47(7):1-19. [28] KATO I, OHTERU S, KOBAYASHI H, et al.Information-power machine with senses and limbs:Theory and practice of robots and manipulators[M].Vienna:Springer Vienna,1974:11-24. [29] FERLAND F,LéTOURNEAU D,AUMONT A,et al.Natural interaction design of a humanoid robot[J]. Journal of Human-Robot Interaction,2013,1(2):118-34. [30] MARKOFF J. Modest debut of atlas may foreshadow age of'robo sapiens'[EB/OL]. https://www.nytimes.com/2013/07/12/science/modest-debut-of-atlas-may-foreshado w-age-of-robo-sapiens.html. [31] HAUSER K, NG-THOW-HING V. Randomized multi-modal motion planning for a humanoid robot manipulation task[J]. The International Journal of Robotics Research,2011,30(6):678-98. [32] UBTECH. Humanoid service robot:Walk into the future[EB/OL].https://www.ubtrobot.com/en/humanoid/products/Walker. [33] DYNAMICS B. Atlas gets an upgrade[EB/OL].https://youtu.be/27HkxMo6qK0. [34] 杭州宇树科技有限公司.宇树h1通用人形机器人[EB/OL]. https://www.unitree.com/operate/h1/.Hangzhou Unitree Technology Co., Ltd. Yushu h1universal humanoid robot[EB/OL].(2024-09-21)[2024-09-21]. https://www.unitree.com/operate/h1/. [35] 小鹏资讯.你好,新鹏友[EB/OL]. https://bbs.xiaopeng.com/article/2127779.Xiaopeng Information. Hello, new friend[EB/OL].(2024-09-20)[2024-09-20]. https://bbs.xiaopeng.com/article/2127779. [36] DYNAMICS B. An electric new era for atlas[EB/OL].https://bostondynamics.com/blog/electric-new-era-for-atla s/. [37] 杨雪.追觅科技发布人形机器人,从1.0时代迈向2.0时代[EB/OL].(2023-03-29)[2024-09-20]. https://new.qq.com/rain/a/20230329A01DUT00.YANG Xue. Dreame releases humanoid robots,moving from 1.0 to 2.0[EB/OL].(2023-03-29)[2024-09-20]. https://new.qq.com/rain/a/20230329A01DUT00. [38] KANEKO K, HARADA K, KANEHIRO F, et al.Humanoid robot HRP-3[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2008:2471-2478. [39] LOHMEIER S, BUSCHMANN T, ULBRICH H.Humanoid robot LOLA[C]//2009 IEEE International Conference on Robotics and Automation. IEEE,2009:775-780. [40] GUIZZO E. By leaps and bounds:An exclusive look at how boston dynamics is redefining robot agility[J]. IEEE Spectrum,2019,56(12):34-39. [41] EL HALABI M,TRENDEL O. Just name it:The act of naming humanoid service robots decreases perceived eeriness and increases repurchase intent[J]. Journal of Service Research,2024:10946705241248242. [42] SONG C S,KIM Y K. The role of the human-robot interaction in consumers'acceptance of humanoid retail service robots[J]. Journal of Business Research,2022,146:489-503. [43] SUN H,WEI C,YAO Y,et al. Analysis and experiment of a bioinspired multimode octopod robot[J]. Chinese Journal of Mechanical Engineering,2023,36(1):142. [44] MUZIO A F,MAXIMO M R,YONEYAMA T. Deep reinforcement learning for humanoid robot behaviors[J].Journal of Intelligent&Robotic Systems, 2022,105(1):12. [45] CHATTERJEE S,ZUNJANI F H,NANDI G C. Real-time object detection and recognition on low-compute humanoid robots using deep learning[C]//20206th International Conference on Control,Automation and Robotics. IEEE,2020:202-208. [46] CHIGNOLI M,KIM D,STANGER E,et al. The MIT humanoid robot:Design,motion planning,and control for acrobatic behaviors[C]//2020 IEEE-RAS 20th International Conference on Humanoid Robots. IEEE,2021:1-8. [47] EDSINGER A, WEBER J. Domo:A force sensing humanoid robot for manipulation research[C]//4th IEEE/RAS International Conference on Humanoid Robots,2004. IEEE,2004,1:273-291. [48] TAKANO W,KANAYAMA H,TAKAHASHI T,et al.A data-driven approach to probabilistic impedance control for humanoid robots[J]. Robotics and Autonomous Systems,2020,124:103353. [49] ARM P,WAIBEL G,PREISIG J,et al. Scientific exploration of challenging planetary analog environments with a team of legged robots[J]. Science Robotics,2023,8(80):eade9548. [50] 肖涛,黄强,杨洁,等.给定手部作业轨迹的仿人机器人推操作研究[J].机器人,2008(5):385-91.XIAO Tao,HUANG Qiang,YANG Jie,et al. Research on push operation of humanoid robot with given hand operation trajectory[J]. Robot,2008(5):385-91. [51] 张利格,黄强,杨洁,等.仿人机器人复杂动态动作设计及相似性研究[J].自动化学报,2007(5):522-528.ZHANG Lige,HUANG Qiang,YANG Jie,et al. Research on complex dynamic motion design and similarity of humanoid robot[J]. Acta Automation Sinica,2007(5):522-528. [52] 凌占一.运动控制学机理在仿人机器人设计中的应用研究[J].铸造,2022,71(2):248-249.LING Zhanyi. Research on the application of motion control mechanism in humanoid robot design[J].Foundry,2022,71(2):248-249. [53] 哈默纳科(上海)商贸有限公司.哈默纳科谐波减速机[EB/OL].(2024-06-20)[2024-06-20]. http://www.hamonake.com/?product4/.Hamnako (Shanghai) Trading Co., Ltd. Hamnako harmonic reducer[EB/OL].(2024-06-20)[2024-06-20]. http://www.hamonake.com/?product4/. [54] 苏州绿的谐波传动科技股份有限公司.绿的谐波减速器_lcsg[EB/OL].(2024-09-21)[2024-09-22]. http://www.leaderdrive.cn/.Suzhou Green Harmonic Drive Technology Co.,Ltd.Green Harmonic Reducer_lcsg[EB/OL].(2024-09-21)[2024-09-22]. http://www.leaderdrive.cn/. [55] KOLLMORGEN. Kollmorgen regal rexnord[EB/OL].(2024-06-22)[2024-06-22]. https://www.kollmorgen.cn/. [56] 上海步科自动化股份有限公司. Fmc无框力矩电机[EB/OL].(2024-06-30)[2024-06-30]. https://www.kinco. cn.Shanghai Buke Automation Co., Ltd. Fmc frameless torque motor[EB/OL].(2024-06-30)[2024-06-30]. https://www.kinco.cn. [57] INTEL. 11th gen fanless industrial mini pc[EB/OL].(2024-06-27)[2024-06-27]. https://ylipc.com/product/11thgen_fanless_industrial_mini_pc. [58] NVIDIA. Geforce rtx 4090[EB/OL].(2024-06-21)[2024-06-21]. https://www.nvidia.com/en-sg/geforce/graphics-cards/40-series/rtx-4090/. [59] SCHUNK. Schunk-hand in hand for tomorrow[EB/OL].(2024-06-29)[2024-06-29]. https://schunk.com. [60] 北京因时机器人科技有限公司.因时机器人-更微小更精密的运动控制专家[EB/OL].(2024-06-29)[2024-06-29]. https://www.inspire-robots.com.Beijing Intime Robot Technology Co., Ltd. Intime Robot-smaller and more precise motion control expert[EB/OL].(2024-06-29)[2024-06-29]. https://www.inspire-robots.com. [61] BRAUD R, GIAGKOS A, SHAW P, et al. Robot multimodal object perception and recognition:Synthetic maturation of sensorimotor learning in embodied systems[J]. IEEE Transactions on Cognitive and Developmental Systems,2020,13(2):416-28. [62] ZHAO X,LUO Q,HAN B. Survey on robot multi-sensor information fusion technology[C]//20087th world congress on Intelligent Control and Automation. IEEE,2008:5019-5023. [63] TAO Y,GAO H,WEN Y,et al. Glass recognition and map optimization method for mobile robot based on boundary guidance[J]. Chinese Journal of Mechanical Engineering,2023,36(1):74. [64] BROOKS D J,LIGNOS C,FINUCANE C,et al. Make it so:Continuous,flexible natural language interaction with an autonomous robot[C]//AAAI Conference on Artificial Intelligence Workshop on Grounding Language for Physical Systems. 2012. [65] ABAD A C,RANASINGHE A. Visuotactile sensors with emphasis on gelsight sensor:A review[J]. IEEE Sensors Journal,2020,20(14):7628-7638. [66] YUAN W, DONG S, ADELSON E H. Gelsight:High-resolution robot tactile sensors for estimating geometry and force[J]. Sensors,2017,17(12):2762. [67] HAMMOCK M L,CHORTOS A,TEE B C K,et al. 25th anniversary article:The evolution of electronic skin (eskin):A brief history,design considerations,and recent progress[J]. Advanced Materials, 2013, 25(42):5997-6038. [68] ISHIDA H, WADA Y, MATSUKURA H. Chemical sensing in robotic applications:A review[J]. IEEE Sensors Journal,2012,12(11):3163-3173. [69] BAUZA M,BRONARS A,HOU Y,et al. Simple,a visuotactile method learned in simulation to precisely pick,localize,regrasp,and place objects[J]. Science Robotics,2024,9(91):eadi8808. [70] GOODMAN I R, MAHLER R P, NGUYEN H T.Mathematics of data fusion[M]. New York:Springer Science&Business Media,2013. [71] PEERS S. A blackboard system approach to electromagnetic sensor data interpretation[J]. Expert Systems,1998,15(3):197-215. [72] HALL D L, LINN R J. Comments on the use of templating for multisensor data fusion[C]//Proc. 1989Tri-Service Data Fusion Symp. 1989,1:345-354. [73] REHER J,AMES A D. Dynamic walking:Toward agile and efficient bipedal robots[J]. Annual Review of Control,Robotics,and Autonomous Systems,2021,4(1):535-72. [74] 高海波,王圣军,单开正,等.牵拉人工肌腱式双足机器人矢状面行走控制[J].机械工程学报,2024,60(15):18-27.GAO Haibo,WANG Shengjun,SHAN Kaizheng,et al.Sagittal walking control of biped robot equipped with artificial tendon[J]. Journal of Mechanical Engineering,2024,60(15):18-27. [75] CAO J,ZHANG J,WANG C,et al. Variable admittance control of high compatibility exoskeleton based on human-robotic interaction force[J]. Chinese Journal of Mechanical Engineering,2024,37(1):119. [76] GRIZZLE J W,CHEVALLEREAU C,SINNET R W,et al. Models,feedback control,and open problems of 3d bipedal robotic walking[J]. Automatica,2014,50(8):1955-88. [77] GONG Y,HARTLEY R,DA X,et al. Feedback control of a cassie bipedal robot:Walking,standing,and riding a segway[C]//2019 American Control Conference. IEEE,2019:4559-4566. [78] STUMPF A,KOHLBRECHER S,CONNER D C,et al.Open source integrated 3D footstep planning framework for humanoid robots[C]//2016 IEEE-RAS 16th International Conference on Humanoid Robots. IEEE,2016:938-945. [79] 杜国锋,赵萌,武建昫,等.基于视觉的闭链多足机器人自主运动控制方法[J].机械工程学报,2024,60(19):62-70.DU Guofeng, ZHAO Meng, WU Jianxu, et al.Vision-based autonomous motion control method for closed-chain multi-legged robot[J]. Journal of Mechanical Engineering,2024,60(19):62-70. [80] SZABO R. Design approach for evolutionary techniques using genetic algorithms:Application for a biped robot to learn to walk and rise after a fall[J]. Mathematics,2023,11(13):2931. [81] LI Q,YU Z,CHEN X,et al. Contact force/torque control based on viscoelastic model for stable bipedal walking on indefinite uneven terrain[J]. IEEE Transactions on Automation Science and Engineering,2019,16(4):1627-39. [82] LIU X,RONG H,NERI F,et al. Deep deterministic policy gradient with constraints for gait optimisation of biped robots[J]. Integrated Computer-Aided Engineering,2024,(Preprint):1-18. [83] ZHAO F,WU Y,YANG X,et al. Multimode design and analysis of an integrated leg-arm quadruped robot with deployable characteristics[J]. Chinese Journal of Mechanical Engineering,2024,37(1):59-71. [84] 石照耀,丁宏钰,汪文广,等.双足机器人腿部新构型设计与试验研究[J].机械工程学报,2023,59(1):103-112.SHI Zhaoyao,DING Hongyu,WANG Wenguang,et al.Design and experimental research on the novel leg configuration of bipedal robot[J]. Journal of Mechanical Engineering,2023,59(1):103-112. [85] 李慧莱,凌振飞,王泽正,等.高扭矩密度仿人机器人驱动单元研究[J].机械工程学报,2022,58(18):192-204.LI Huilai,LING Zhenfei,WANG Zezheng,et al. Research on high torque density drive unit for humanoid robots[J].Journal of Mechanical Engineering, 2022, 58(18):192-204. [86] HOBART C G,MAZUMDAR A,SPENCER S J,et al.Achieving versatile energy efficiency with the wanderer biped robot[J]. IEEE Transactions on Robotics,2020,36(3):959-966. [87] TONG Y,LIU H,ZHANG Z. Advancements in humanoid robots:A comprehensive review and future prospects[J].IEEE/CAA Journal of Automatica Sinica,2024,11(2):301-328. [88] RAMíREZ REBOLLO D R,PONCE P,MOLINA A.From 3 fingers to 5 fingers dexterous hands[J]. Advanced Robotics,2017,31(19-20):1051-1070. [89] TURING A M. Computing machinery and intelligence[M].New York:Springer,2009. [90] FAN H,LIU X,FUH J Y H,et al. Embodied intelligence in manufacturing:Leveraging large language models for autonomous industrial robotics[J]. Journal of Intelligent Manufacturing,2024:1-17. [91] BIGAZZI R,CORNIA M,CASCIANELLI S,et al.Embodied agents for efficient exploration and smart scene description[C]//2023 IEEE International Conference on Robotics and Automation. IEEE,2023:6057-6064. [92] KOTAR K,WALSMAN A,MOTTAGHI R. Entl:Embodied navigation trajectory learner[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023:10863-10872. [93] KIM B,KIM J,KIM Y,et al. Context-aware planning and environment-aware memory for instruction following embodied agents[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023:10936-10946. [94] CANCELLI E, CAMPARI T, SERAFINI L, et al.Exploiting proximity-aware tasks for embodied social navigation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023:10957-10967. [95] SONG C H, WU J, WASHINGTON C, et al.Llm-planner:Few-shot grounded planning for embodied agents with large language models[C]//Proceedings of the IEEE/CVF international conference on computer vision.2023:2998-3009. [96] LIU Y,CHEN W,BAI Y,et al. Aligning cyber space with physical world:A comprehensive survey on embodied ai[J]. Arxiv Preprint Arxiv:240706886,2024. [97] ZITKOVICH B, YU T, XU S, et al. Rt-2:Vision-language-action models transfer web knowledge to robotic control[C]//Conference on Robot Learning.PMLR,2023:2165-2183. [98] DEVELOPER N. Project gr00t robotic foundation model[EB/OL].(2024-6-30)[2024-6-30]. https://developer.nvidia.com/project-gr00t. [99] 曹政.北京人形机器人"天工"升级亮相[N].北京日报,2024-08-23(006).CAO Zheng. Beijing humanoid robot'Tiangong'upgrade debut[N]. Beijing Daily,2024-08-23(006). [100] 白辰甲,许华哲,李学龙.大模型驱动的具身智能:发展与挑战[J].中国科学:信息科学,2024,54(9):2035-2082.BAI Chenjia,XU Huazhe,LI Xuelong. Large model driven embodied intelligence:Development and challenges[J]. Scientia Sinica Informationis, 2024,54(9):2035-2082. [101] WANG B,ZHANG J,DONG S,et al. Vlm see,robot do:Human demo video to robot action plan via vision language model[J]. Arxiv Preprint Arxiv:241008792,2024. [102] 腾讯研究院.向AI而行,共筑新质生产力--行业大模型调研报告[R/OL].深圳:腾讯研究院.(2024-05-13). http://lib.ia.ac.cn:8003/ContentDelivery/20240514/.Tencent Research Institute. Walk towards AI and build a new quality productivity-industry model research report[R/OL]. Shenzhen:Tencent Research Institute.(2024-05-13). http://lib.ia.ac.cn:8003/ContentDelivery/20240514/. [103] DRIESS D,XIA F,SAJJADI M S,et al. Palm-e:An embodied multimodal language model[J]. Arxiv Preprint Arxiv:230303378,2023. [104] ZHANG S,ROLLER S,GOYAL N,et al. Opt:Open pre-trained transformer language models[J]. Arxiv Preprint Arxiv:220501068,2022. [105] CHEANG C,CHEN G,JING Y,et al. Gr-2:A generative video-language-action model with web-scale knowledge for robot manipulation[J]. Arxiv Preprint Arxiv:241006158,2024. [106] LI Z,ZHANG J,LIN Q,et al. Hunyuan-dit:A powerful multi-resolution diffusion transformer with fine-grained chinese understanding[J]. Arxiv Preprint Arxiv:240508748,2024. [107] 科大讯飞股份有限公司. Aibot机器人超脑平台[EB/OL].(2024-09-30)[2024-09-30]. https://aibot.xfyun.cn/.IFLYTEK CO., LTD. Aibot robot super brain platform[EB/OL].(2024-09-30)[2024-09-30]. https://aibot.xfyun.cn/. [108] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778. [109] MEI Y,JIN H,YU B,et al. Visual geometry group-unet:Deep learning ultrasonic image reconstruction for curved parts[J]. The Journal of the Acoustical Society of America,2021,149(5):2997-3009. [110] 刘程果,合烨,陈小安,等.基于节律动态运动基元与机器人动力学的多空间融合周期性变阻抗技能学习[J].机械工程学报,2025,61(1):150-161.LIU Chengguo,HE Ye,CHEN Xiaoan,et al. Multi-space fused periodic variable impedance skill learning based on rhythmic dynamic movement primitive and robot dynamics[J]. Journal of Mechanical Engineering,2025,61(1):150-161. [111] 喻惟刚,文思捷,李建军,等.基于可供性推理的人机协作拆卸序列规划方法[J].机械工程学报,2024,60(17):297-309.YU Weigang,WEN Sijie,LI Jianjun,et al. Affordance reasoning-based sequence planning manner for human-robot collaborative disassembly[J]. Journal of Mechanical Engineering,2024,60(17):297-309. [112] 鲍劲松,张荣,李婕,等.面向人-机-环境共融的数字孪生协同技术[J].机械工程学报,2022,58(18):103-115.BAO Jingsong,ZHANG Rong,LI Jie,et al. Digital-twin collaborative technology for human-robot-environment integration[J]. Journal of Mechanical Engineering,2022,58(18):103-115. [113] 上海傅利叶智能科技有限公司. Fourier intelligence gr-2[EB/OL].(2024-06-30)[2024-06-30]. https://www.fftai.cn/products-gr2.Shanghai Fourier Intelligence Technology Co., Ltd.Fourier intelligence gr-2[EB/OL].(2024-06-30)[2024-06-30]. https://www.fftai.cn/products-gr2. [114] FIGURE. Figure[EB/OL].(2024-06-30)[2024-06-30]. https://www.figure.ai/. [115] 我爱机器人. AI、大模型、具身智能涌现,人形机器人可能在十年内进入千家万户[EB/OL].(2024-06-21)[2024-06-21]. http://www.52robot.com/robot-news/3002.html.I love robots. AI,big models,and embodied intelligence have emerged, and humanoid robots may enter thousands of households within ten years[EB/OL].(2024-06-21)[2024-06-21]. http://www.52robot.com/robot-news/3002.html. [116] HARA T,SATO T,OGATA T,et al. Uncertainty-aware haptic shared control with humanoid robots for flexible object manipulation[J]. IEEE Robotics and Automation Letters,2023. [117] TONG Y, LIU H, ZHANG Z. Advancements in humanoid robots:A comprehensive review and future prospects[J]. IEEE/CAA Journal of Automatica Sinica,2024,11(2):301-328. [118] GAMA F, SHCHERBAN M, ROLF M, et al.Goal-directed tactile exploration for body model learning through self-touch on a humanoid robot[J]. IEEE Transactions on Cognitive and Developmental Systems,2021,15(2):419-433. [119] TAGA G. Global entrainment in the brain-bodyenvironment:Retrospective and prospective views[J].Biological Cybernetics,2021,115(5):431-438. [120] 杨光.首款搭载鸿蒙操作系统的人形机器人夸父进厂做工[N].中国信息化周报,2024-07-15(019).YANG Guang. Kua Fu, the first humanoid robot equipped with Hongmeng operating system,enters the factory for work[N]. China Information Weekly,2024-07-15(019). [121] HUAWEI.华为开发者大会[EB/OL].(2024-06-22)[2024-09-29]. https://developer.huawei.com/home/hdc/hdc2024.html.HUAWEI. Huawei Developers Conference[EB/OL].(2024-06-22)[2024-09-29]. https://developer.huawei.com/home/hdc/hdc2024.html. [122] MCLEAY F,OSBURG V S,YOGANATHAN V,et al.Replaced by a robot:Service implications in the age of the machine[J]. Journal of Service Research,2021,24(1):104-121. [123] DEVELOPER N. Nvidia isaac lab[EB/OL].(2024-09-29)[2024-09-29]. https://developer.nvidia.com/isaac/lab. [124] HEIDEN E, MILLARD D, COUMANS E, et al.Neuralsim:Augmenting differentiable simulators with neural networks[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),F,2021. IEEE. [125] RUDIN N,HOELLER D,REIST P,et al. Learning to walk in minutes using massively parallel deep reinforcement learning[C]//Conference on Robot Learning. PMLR,2022:91-100. [126] HA D, TANG Y. Collective intelligence for deep learning:A survey of recent developments[J]. Collective Intelligence,2022,1(1):26339137221114874. [127] FICHT G, FARAZI H, RODRIGUEZ D, et al.Nimbro-op2x:Affordable adult-sized 3D-printed open-source humanoid robot for research[J].International Journal of Humanoid Robotics,2020,17(5):2050021. [128] 王桂芝.国外人形机器人发展及军事应用分析[J].机器人技术与应用,2023(3):6-8.WANG Guizhi. Analysis of the development and military application of foreign humanoid robots[J].Robot Technique and Application,2023(3):6-8. [129] R A. Boston dynamics'atlas robot grows aset of hands,attempts construction work[EB/OL].(2023-03-14)[2024-06-23]. https://arstechnica.com/gadgets/2023/01/. [130] E A. Darpa robotics challenge trials:Tasks and scoring[EB/OL].(2023-03-14)[2024-06-23]. https://spectrum.ieee.org/drc-tasks-and-scoring#toggle-gdpr. [131] LIU S. Research and judgment on foreign humanoid robot technology frontiers and industrial development situation[J]. Artificial Intelligence and Robotics Research,2024,13:246. [132] 朱秋国,熊蓉.人形机器人技术现状及场景应用思考[J].机器人产业,2023(4):14-19.ZHU Qiuguo, XIONG Rong. Humanoid robot technology status and scene application thinking[J].Robot Industry,2023(4):14-19. [133] 朱妍.人形机器人产业发展现状与启示[J].科技和产业,2023,23(22):136-141.ZHU Yan. The development status and enlightenment of humanoid robot industry[J]. Science Technology and Industry,2023,23(22):136-141. [134] 李轲昕.对话优必选:实践证明,人形机器人不是"囧途"[J].机器人产业,2024(4):30-35.LI Kexin. Dialogue UBTECH:Practice has proved that humanoid robots are not awkward[J]. Robot Industry,2024(4):30-35. [135] ROBOTICS U. Unitree h1-宇树首款通用人形机器人[EB/OL].(2024-09-19)[2024-09-21]. https://www.unitree.com/cn/h1.ROBOTICS U. Unitree h1-Unitree's first universal humanoid robot[EB/OL].(2024-09-19)[2024-09-21]. https://www.unitree.com/cn/h1. [136] Tencent Robotics X.腾讯最新机器人"小五"亮相,瞄准人居环境[EB/OL].(2024-09-24)[2024-09-29]. https://mp.weixin.qq.com/s/p ZUKo5OLLd ARQGv G7p w M6A.Tencent Robotics X. Tencent's latest robot'The Five'debut, aiming at the living environment[EB/OL].(2024-09-24)[2024-09-29]. https://mp.weixin.qq.com/s/p ZUKo5OLLd ARQGv G7p w M6A. [137] 林春霞.人形机器人在服务领域将大有作为[N].中国经济时报,2023-07-14(004).LIN Chunxia. Humanoid robots will make a difference in the field of service[N]. China Economic Times,2023-07-14(004). [138] TESLA. We,robot[EB/OL].(2024-10-09)[2024-10-12]. https://www.tesla.com/we-robot. [139] 傅利叶智能.傅利叶GR-2更灵活、更强劲、更开放[EB/OL].(2024-09-16)[2024-09-20]. https://www.fftai.cn/products-gr2.Fourier Intelligence. Fourier GR-2 is more flexible,stronger and more open[EB/OL].(2024-09-16)[2024-09-20]. https://www.fftai.cn/products-gr2. [140] 郑学思.乐聚机器人:人形机器人提速迈向产业化[J].机器人产业,2024(4):46-50.ZHENG Xuesi. Leju robot:Humanoid robot speeding up to industrialization[J]. Robot Industry,2024(4):46-50. [141] NAGRANI A,YANG S,ARNAB A,et al. Attention bottlenecks for multimodal fusion[J]. Advances in neural information processing systems,2021,34:14200-14213. [142] AGUILERA P A,FERNÁNDEZ A,FERNÁNDEZ R,et al. Bayesian networks in environmental modelling[J].Environmental Modelling&Software,2011,26(12):1376-1388. [143] SRIDHAR A,SHAH D,GLOSSOP C,et al. Nomad:Goal masked diffusion policies for navigation and exploration[C]//2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2024:63-70. [144] POPESCU C A,OLTEANU S-C,IFRIM A M,et al. The influence of energy consumption and the environmental impact of electronic components on the structures of mobile robots used in logistics[J]. Sustainability,2024,16(19):8396. [145] KE W,BAI Y,LI H,et al. Control of stepping downstairs for humanoid robot based on dynamic multi-objective optimization[J]. Concurrency and Computation:Practice and Experience,2021,33(5):e5999. [146] SUGIHARA T,MORISAWA M. A survey:Dynamics of humanoid robots[J]. Advanced Robotics, 2020,34(21-22):1338-1352. [147] YANG C,JIANG Y,NA J,et al. Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics[J]. IEEE Transactions on Fuzzy Systems,2018,27(3):574-588. [148] DRAGHICI B G,DOBRE A E,MISAROS M,et al.Development of a human service robot application using pepper robot as a museum guide[C]//2022 IEEE International Conference on Automation,Quality and Testing,Robotics. IEEE,2022:1-5. [149] SUN Y,TANG H,TANG Y,et al. Review of recent progress in robotic knee prosthesis related techniques:Structure,actuation and control[J]. Journal of Bionic Engineering,2021,18(4):764-785. [150] HUANG Q,DONG C,YU Z,et al. Resistant compliance control for biped robot inspired by humanlike behavior[J]. IEEE/ASME Transactions on Mechatronics,2022,27(5):3463-3473. [151] LI G,LI Z,KAN Z. Assimilation control of a robotic exoskeleton for physical human-robot interaction[J].IEEE Robotics and Automation Letters,2022,7(2):2977-2984. [152] LIN C,QI W. Integrating AI in human-robot interaction:emerging challenges and future directions[C]//2024IEEE International Conference on Acoustics,Speech,and Signal Processing Workshops. IEEE,2024:379-382. [153] CHEN Y,ARKIN J,DAWSON C,et al. Autotamp:Autoregressive task and motion planning with llms as translators and checkers[C]//2024 IEEE International Conference on Robotics and Automation. IEEE,2024:6695-6702. [154] BORDES F,PANG R Y,AJAY A,et al. An introduction to vision-language modeling[J]. Arxiv Preprint Arxiv:240517247,2024. [155] CASHEEKAR A,LAHIRI A,RATH K,et al. A contemporary review on chatbots,ai-powered virtual conversational agents, chatgpt:Applications, open challenges and future research directions[J]. Computer Science Review,2024,52:100632. |
[1] | 雷亚国, 李熹伟, 李响, 李乃鹏, 杨彬. 面向机械设备通用健康管理的智能运维大模型[J]. 机械工程学报, 2025, 61(6): 1-13. |
[2] | 刘志峰, 陈传海, 郭劲言, 黎志杰. 数控机床可靠制造新范式:由“功能上的可能”升级为“性能上的可靠”[J]. 机械工程学报, 2025, 61(12): 293-304. |
[3] | 褚文博, 甘露, 李国法, 唐小林, 李克强. 面向自动驾驶的大模型高效压缩技术:综述[J]. 机械工程学报, 2024, 60(22): 224-240. |
[4] | 于金须, 闫建华, 王孝冉, 张立杰, 谢平, 李永泉. 一种人机共融的手指外骨骼机器人设计与验证[J]. 机械工程学报, 2024, 60(17): 102-110. |
[5] | 何畅, 熊蔡华, 陈文斌. 脑损伤上肢康复机器人及其临床应用研究[J]. 机械工程学报, 2023, 59(19): 65-80. |
[6] | 陶永, 兰江波, 刘海涛, 王田苗, 高赫, 温宇方, 段练. 基于滑模和模糊算法相融合的人机协作机器人轨迹跟踪方法[J]. 机械工程学报, 2022, 58(18): 181-191. |
[7] | 张立杰, 于金须, 闫建华, 杜义浩, 谢平, 李永泉. 基于人机共融的外骨骼机构构型综合及优选方法[J]. 机械工程学报, 2022, 58(11): 37-45. |
[8] | 荆泓玮, 朱延河, 赵思恺, 张清华, 赵杰. 外肢体机器人研究现状及发展趋势[J]. 机械工程学报, 2020, 56(7): 1-9. |
[9] | 周玉林;高峰. 仿人机器人构型[J]. , 2006, 42(11): 66-74. |
[10] | 朱剑英. 现代制造系统模式、建模方法及关键技术的新发展[J]. , 2000, 36(8): 1-5. |
[11] | 邹慧君;蓝兆辉;王石刚;郭为忠. 机构学研究现状、发展趋势和应用前景[J]. , 1999, 35(5): 1-4. |
[12] | 路甬祥;陈鹰. 人机一体化系统科学体系和关键技术[J]. , 1995, 31(1): 1-7. |
[13] | 唐定国;陈国民. 齿轮传动技术的现状和展望[J]. , 1993, 29(5): 35-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||