• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 224-240.doi: 10.3901/JME.2024.22.224

• 运载工程 • 上一篇    下一篇

扫码分享

面向自动驾驶的大模型高效压缩技术:综述

褚文博1,2,3, 甘露1,2, 李国法1, 唐小林1, 李克强4   

  1. 1. 重庆大学机械与运载工程学院 重庆 400044;
    2. 西部科学城智能网联汽车创新中心(重庆)有限公司 重庆 401329;
    3. 重庆理工大学机械检测技术与装备教育部工程研究中心 重庆 400054;
    4. 清华大学车辆与运载学院 北京 100084
  • 收稿日期:2024-02-25 修回日期:2024-06-25 出版日期:2024-11-20 发布日期:2025-01-02
  • 作者简介:文博,男,1986年出生,博士,研究员,正高级工程师。主要研究方向为智能网联汽车关键技术研发及科技转化。E-mail:chuwenbo@wicv.cn;李国法(通信作者),男,1986年出生,博士,教授,博士研究生导师。主要研究方向为人工智能技术在智能网联汽车中的创新与应用。E-mail:liguofa@cqu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB2503205)、国家自然科学基金(52372377,52272421,52222215,52072051)、工信部产业技术基础公共服务平台(2021-0176-1-1)和智能绿色车辆与交通全国重点实验室开放基金课题(KFZ2409)资助项目。

Large Models Efficient Compression Technology for Autonomous Driving: A Review

CHU Wenbo1,2,3, GAN Lu1,2, LI Guofa1, TANG Xiaolin1, LI Keqiang4   

  1. 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. Western China Science City Innovation Center of Intelligent andConnected Vehicles (Chongqing) Co., Ltd., Chongqing 401329;
    3. Engineering Research Center of Mechanical Testing Technology and Equipment Ministry of Education, Chongqing University of Technology, Chongqing 400054;
    4. School of Vehicle and Mobility, Tsinghua University, Beijing 100084
  • Received:2024-02-25 Revised:2024-06-25 Online:2024-11-20 Published:2025-01-02
  • About author:10.3901/JME.2024.22.224

摘要: 随着自动驾驶系统(Autonomous driving systems, ADS)在全球范围内的快速发展和广泛应用,大模型在自动驾驶技术中扮演着关键角色。这些模型通过整合多传感器数据,实现对复杂驾驶环境的快速准确理解和决策。然而,大模型面临超大规模参数、高计算成本和大存储需求等挑战,尤其在资源有限的车端设备上更为突出。有效压缩大模型成为当前研究的重要方向,可以降低大模型的计算和存储需求的同时保持性能。首先深入探讨了大模型技术的最新进展和应用实践,从而衍生出高效压缩技术。然后从剪枝、神经网络架构搜索、低秩分解、量化和知识蒸馏等角度出发,分析各种压缩技术的原理和性能特征。最后,基于现有研究,提出大模型高效压缩技术未来的挑战和发展方向,旨在为自动驾驶技术提供新思路和解决方案,推动系统向更高效、更智能、更安全的方向发展。

关键词: 自动驾驶, 大模型, 综述, 高效压缩技术

Abstract: With the rapid development and widespread application of autonomous driving systems (ADS) globally, large models play a pivotal role in autonomous driving technology. These models integrate data from multiple sensors to achieve rapid and accurate understanding and decision-making in complex driving environments. However, large models face challenges such as massive parameter sizes, high computational costs, and large storage requirements, particularly accentuated in edge devices with limited resources. Efficiently compressing large models has become a significant research focus, enabling a reduction in computational and storage demands while maintaining performance. This study extensively explores the latest advancements and practical applications of large models technology, leading to the emergence of efficient compression techniques. It then analyzes various compression techniques, including pruning, neural network architecture search, low-rank decomposition, quantization, and knowledge distillation, in terms of their principles and performance characteristics. Finally, based on existing research, it outlines the future challenges and development directions of efficient compression techniques for large models, aiming to provide new insights and solutions for autonomous driving technology and drive the system towards higher efficiency, intelligence, and safety.

Key words: autonomous driving, large models, review, efficient compression technology

中图分类号: