机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 301-317.doi: 10.3901/JME.2025.20.301
• 交叉与前沿 • 上一篇
牛帅1, 仝晓萌1, 蔡茂林1, 李毅波2, 岳烜德3
收稿日期:2024-10-25
修回日期:2025-07-02
发布日期:2025-12-03
作者简介:牛帅,男,1997年出生,博士研究生。主要研究方向为智能制造、数字制造。E-mail:niushuai7911@163.com基金资助:NIU Shuai1, TONG Xiaomeng1, CAI Maolin1, LI Yibo2, YUE Xuande3
Received:2024-10-25
Revised:2025-07-02
Published:2025-12-03
摘要: 随着数字化制造技术的迅速发展,企业数据库中已积累大量加工工艺实例。基于“几何相似则工艺相似”的基本原理,通过识别和提取相似的三维几何工艺信息,可有效实现工艺知识的重用,进而提升工艺决策系统的智能化水平,缩短产品开发周期。在数控加工工艺重用技术快速发展的背景下,系统把握其发展现状和未来趋势,为工艺设计人员提供全面的文献综述具有重要的理论和实践意义。研究从三个维度系统分析和总结了数控加工工艺重用技术的最新研究进展:首先,宏观工艺重用层面重点探讨产品整体加工路线的重用方法;其次,微观工艺重用层面聚焦于具体加工环节中工艺知识的精确提取与应用技术;最后,基于机器学习的工艺重用技术则聚焦于非结构化CAD模型数据的处理及其与工艺信息之间复杂的映射关系。这些研究成果不仅对提升工艺设计效率具有重要的理论指导价值,同时在促进工艺知识管理体系的完善方面也具有显著的实践价值。
中图分类号:
牛帅, 仝晓萌, 蔡茂林, 李毅波, 岳烜德. 面向智能制造的数控加工工艺重用关键技术:系统回顾[J]. 机械工程学报, 2025, 61(20): 301-317.
NIU Shuai, TONG Xiaomeng, CAI Maolin, LI Yibo, YUE Xuande. Key Technologies for CNC Machining Process Reuse for Intelligent Manufacturing: A Systematic Review[J]. Journal of Mechanical Engineering, 2025, 61(20): 301-317.
| [1] 马南峰,姚锡凡,陈飞翔,等. 面向工业5.0的人本智造[J]. 机械工程学报,2022,58(18):88-102. MA Nanfeng,YAO Xifan,CHEN Feixiang,et al. Human-centric smart manufacturing for industry 5.0[J]. Journal of Mechanical Engineering,2022,58(18):88-102. [2] 姚锡凡,马南峰,张存吉,等. 以人为本的智能制造:演进与展望[J]. 机械工程学报,2022,58(18):2-15. YAO Xifan,MA Nanfeng,ZHANG Cunji,et al. Human-centered intelligent manufacturing:Evolution and prospects[J]. Journal of Mechanical Engineering,2022,58(18):2-15. [3] XU K,LI Y,LIU C,et al. Advanced data collection and analysis in data-driven manufacturing process[J]. Chinese Journal of Mechanical Engineering,2020,33(3):40-60. [4] 庄存波,刘检华,张雷. 工业5.0的内涵、体系架构和使能技术[J]. 机械工程学报,2022,58(18):75-87. ZHUANG Cunbo,LIU Jianhua,ZHANG Lei. Connotation,architecture and enabling technology of industrial 5.0[J]. Journal of Mechanical Engineering,2022,58(18):75-87. [5] ZHANG L,LIU J,ZHUANG C. Digital twin modeling enabled machine tool intelligence:a review[J]. Chinese Journal of Mechanical Engineering,2024,37(2):46-71. [6] LIU Y,WANG L,WANG X V,et al. Scheduling in cloud manufacturing:state-of-the-art and research challenges[J]. International Journal of Production Research,2019,57(15-16):4854-4879. [7] XU J,WANG L,GAO M,et al. Deformation evolution and perceptual prediction for additive manufacturing of lightweight composite driven by hybrid digital twins[J]. Chinese Journal of Mechanical Engineering,2024,37(5):113-131. [8] VALILAI O F,HOUSHMAND M. INFELT STEP:An integrated and interoperable platform for collaborative CAD/CAPP/CAM/CNC machining systems based on STEP standard[J]. International Journal of Computer Integrated Manufacturing,2010,23(12):1095-1117. [9] SOORI M,JOUGH F K G,DASTRES R,et al. Sustainable CNC machining operations,a review[J]. Sustainable Operations and Computers,2024,5:73-87. [10] LIN Q,GU F,WANG C,et al. Intelligent design method for thermal conductivity topology based on a deep generative network[J]. Chinese Journal of Mechanical Engineering,2025,38(1):47. [11] CHEN X,GAO S,GUO S,et al. A flexible assembly retrieval approach for model reuse[J]. Computer-Aided Design,2012,44(6):554-574. [12] GUO F,LIU J,ZHOU X,et al. An effective retrieval method for 3D models in plastic injection molding for process reuse[J]. Applied Soft Computing,2021,101:107034. [13] RADHIKA C,SHANMUGAM R,RAMONI M,et al. A review on additive manufacturing for aerospace application[J]. Materials Research Express,2024,11(2):022001. [14] KUMAR G R,SATHISHKUMAR M,VIGNESH M,et al. Metal additive manufacturing of commercial aerospace components–A comprehensive review[J]. Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2023,237(2):441-454. [15] ZHAO G,ZHAO B,DING W,et al. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:A comparative analysis[J]. International Journal of Extreme Manufacturing,2024,6(2):022007. [16] 张辉. 零件主干工艺路线提取与工艺排序方法及其在锻压装备中的应用[J]. 杭州:浙江大学,2013. ZHANG Hui. Extraction and sequencing methods of main process routes for parts and their application to forging and stamping equipment[D]. Hangzhou:Zhejiang University,2013. [17] WEN J,XIE F,LIU X,et al. Evolution and development trend prospect of metal milling equipment[J]. Chinese Journal of Mechanical Engineering,2023,36(2):17-31. [18] LIU S,BAO J,ZHENG P. A review of digital twin-driven machining:From digitization to intellectualization[J]. Journal of Manufacturing Systems,2023,67:361-378. [19] PAOLONE G,MANDURINO M,DE PALMA F,et al. Color stability of polymer-based composite CAD/CAM blocks:A systematic review[J]. Polymers,2023,15(2):464. [20] SOORI M,AREZOO B,DASTRES R. Machine learning and artificial intelligence in CNC machine tools,a review[J]. Sustainable Manufacturing and Service Economics,2023,2:100009. [21] NING F,SHI Y,CAI M,et al. Manufacturing cost estimation based on the machining process and deep-learning method[J]. Journal of Manufacturing Systems,2020,56:11-22. [22] VISHNU V,VARGHESE K G,GURUMOORTHY B. A data-driven digital twin framework for key performance indicators in CNC machining processes[J]. International Journal of Computer Integrated Manufacturing,2023,36(12):1823-1841. [23] ZHANG S,BAI J. Research on CNC programming and machining process based on CAD/CAM technology[J]. Applied Mathematics and Nonlinear Sciences,2024,9(1):1-11. [24] CHAUHAN S,TREHAN R,SINGH R P. State of the art in finite element approaches for milling process:A review[J]. Advances in Manufacturing,2023,11(4):708-751. [25] NING F,SHI Y,CAI M,et al. Various realization methods of machine-part classification based on deep learning[J]. Journal of Intelligent Manufacturing,2020,31(8):2019-2032. [26] 王裴岩,张桂平,翟顺龙,等. 基于多核学习的装配工艺过程重用[J]. 计算机集成制造系统,2018,24(7):1850-1857. WANG Peiyan,ZHANG Guiping,ZHAI Shunlong,et al. Multiplexer kernel learning based assembly process reuse[J]. Computer Integrated Manufacturing System (CIMS),2018,24(7):1850-1857. [27] XIAO Y,ZHENG S,SHI J,et al. Knowledge graph-based manufacturing process planning:A state-of-the-art review[J]. Journal of Manufacturing Systems,2023,70:417-435. [28] DANTALE A. A group technology based approach for application of design for manufacturability (DFM) rules[D]. Cincinnati:University of Cincinnati,2016. [29] JONG W R,LAI P J,CHEN Y W,et al. Automatic process planning of mold components with integration of feature recognition and group technology[J]. The International Journal of Advanced Manufacturing Technology,2015,78:807-824. [30] NING F,SHI Y,TONG X,et al. A review and assessment of 3D CAD model retrieval in machine-part design[J]. International Journal of Computer Integrated Manufacturing,2024(8):1-23. [31] ZHENG L,DONG H,VICHARE P,et al. Systematic modeling and reusing of process knowledge for rapid process configuration[J]. Robotics and Computer- Integrated Manufacturing. 2008,24(6):763-772. [32] LIU J,ZHOU H,TIAN G,et al. Digital twin-based process reuse and evaluation approach for smart process planning[J]. The International Journal of Advanced Manufacturing Technology,2019,100:1619-1634. [33] NING F,SHI Y,TONG X,et al. Manufacturing cost estimation based on similarity[J]. International Journal of Computer Integrated Manufacturing,2023,36(8):1238-1253. [34] QIN F,QIU S,GAO S,et al. 3D CAD model retrieval based on sketch and unsupervised variational autoencoder[J]. Advanced Engineering Informatics,2022,51:101427. [35] LI W,MAC G,TSOUTSOS N G,et al. Computer aided design (CAD) model search and retrieval using frequency domain file conversion[J]. Additive Manufacturing,2020,36:101554. [36] LEE H,LEE J,KIM H,et al. Dataset and method for deep learning-based reconstruction of 3D CAD models containing machining features for mechanical parts[J]. Journal Of Computational Design and Engineering,2022,9(1):114-127. [37] GüMELI C,DAI A,NIEßNER M. Roca:Robust cad model retrieval and alignment from a single image[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,2022:4022-4031 [38] HERZOG V,SUWELACK S. Bridging the Gap between geometry and user intent:Retrieval of CAD models via regions of interest[J]. Computer-aided Design,2023,163:103573. [39] KWON O,YEO C,MUN D. Retrieval of CAD part models complying with design specification using a relational design rule-embedded BOM[J]. The International Journal of Advanced Manufacturing Technology,2024,133(7):3283-3299. [40] GAO D,ROZENBERSZKI D,LEUTENEGGER S,et al. Diffcad:Weakly-supervised probabilistic cad model retrieval and alignment from an rgb image[J]. ACM Transactions on Graphics,2024,43(4):1-15. [41] HOU J,LUO C,QIN F,et al. FuS-GCN:Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval[J]. Advanced Engineering Informatics,2023,56:102008. [42] LI Y,DU H,KUMARASWAMY S B. Case-based reasoning approach for decision-making in building retrofit:A review[J]. Building Environment,2024,248:111030. [43] SCHULTHEIS A,ZEYEN C,BERGMANN R. An overview and comparison of case-based reasoning frameworks[C]//International Conference on Case-Based Reasoning,2023:327-343 [44] YAN A,CHENG Z. A review of the development and future challenges of case-based reasoning[J]. Applied Sciences,2024,14(16):7130. [45] LI Z,ZHOU X,LIU W,et al. A geometry search approach in case-based tool reuse for mould manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2015,79:757-768. [46] XAVIOR A M,ANOUNCIA M S. Case-based reasoning (CBR) model for hard machining process[J]. The International Journal of Advanced Manufacturing Technology,2012,61:1269-1275. [47] YOU C-F,TSAI Y-L,LIU K-Y. Representation and similarity assessment in case-based process planning and die design for manufacturing automotive panels[J]. The International Journal of Advanced Manufacturing Technology,2010,51:297-310. [48] HUANG B,ZHANG S,HUANG R,et al. An effective retrieval approach of 3D CAD models for macro process reuse[J]. The International Journal of Advanced Manufacturing Technology,2019,102:1067-1089. [49] JIANG Z,JIANG Y,WANG Y,et al. A hybrid approach of rough set and case-based reasoning to remanufacturing process planning[J]. Journal of Intelligent Manufacturing,2019,30:19-32. [50] WANG Z,ROSEN D. Manufacturing process classification based on heat kernel signature and convolutional neural networks[J]. Journal of Intelligent Manufacturing,2023,34(8):3389-3411. [51] CHEN M,QU R,FANG W. Case-based reasoning system for fault diagnosis of aero-engines[J]. Expert Systems with Applications,2022,202:117350. [52] LI C. A novel framework for discovery and reuse of typical process route driven by symbolic entropy and intelligent optimisation algorithm[J]. Plos One,2022. 17(9):e0274532. [53] 李春磊,常智勇,李亮. 一种新的基于信息熵和PSO- Kmeans聚类算法的典型工艺路线发现与重用体系[J]. 西北工业大学学报,2023,41(1):198-208. LI Chunlei,CHANG Zhiyong,LI Liang. A novel system for discovery and reuse of typical process route based on information entropy and PSO-Kmeans clustering algorithm[J]. Journal of Northwestern Polytechnical University,2023,41(1):198-208. [54] PAULI J,HOFFMANN M,BERGMANN R. Similarity-based retrieval in process-oriented case-based reasoning using graph neural networks and transfer learning[C]//The International FLAIRS Conference Proceedings,2023:1-8 [55] XU B,WANG Y,JI Z. A novel operation sequence similarity-based approach for typical process route knowledge discovery[J]. IEEE Access,2021,9:126801-126821. [56] DING S,FENG Q,SUN Z,et al. MBD based 3D CAD model automatic feature recognition and similarity evaluation[J]. IEEE Access,2021,9:150403-150425. [57] LI J,ZHOU G,ZHANG C,et al. Defining a feature-level digital twin process model by extracting machining features from MBD models for intelligent process planning[J]. Journal of Intelligent Manufacturing,2025,36(15):3227-3248. [58] LIU G,WANG Y,HUANG B,et al. The intelligent monitoring technology for machining thin-walled components:A review[J]. Machines,2024,12(12): 876. [59] ZHANG X,NASSEHI A,NEWMAN S T. Feature recognition from CNC part programs for milling operations[J]. The International Journal of Advanced Manufacturing Technology,2014,70:397-412. [60] DING S,GUO Z,WANG B,et al. MBD-based machining feature recognition and process route optimization[J]. Machines,2022,10(10):906. [61] GUO L,ZHOU M,LU Y,et al. A hybrid 3D feature recognition method based on rule and graph[J]. International Journal of Computer Integrated Manufacturing,2021,34(3):257-281. [62] YAO X,WANG D,YU T,et al. A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J]. Journal of Intelligent Manufacturing,2023,34(6):2599-2610. [63] MA L,YANG J. Adaptive recognition of machining features in sheet metal parts based on a graph class-incremental learning strategy[J]. Scientific Reports,2024,14(1):10656. [64] LEE J,LEE H,MUN D. 3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models[J]. Scientific Reports,2022,12(1):14864. [65] SHI P,TONG X,CAI M,et al. A novel 2.5 D machining feature recognition method based on ray blanking algorithm[J]. Journal of Intelligent Manufacturing,2024,35(4):1585-1605. [66] JIAN C,SHENG Z,LU Y,et al. QSCC:A quaternion semantic cell convolution graph neural network for MBD product model classification[J]. IEEE Transactions on Industrial Informatics,2023,19(12):11477-11486. [67] CHEN Y,HUANG Z,CHEN L,et al. Parametric process planning based on feature parameters of parts[J]. The International Journal of Advanced Manufacturing Technology,2006,28:727-736. [68] HUANG R,JIANG J,HUANG B,et al. Multilevel structured NC machining process model based on dynamic machining feature for process reuse[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5):2045-2060. [69] YIN Z,SHI L,YUAN Y,et al. A study on a knowledge graph construction method of safety reports for process industries[J]. Processes,2023,11(1):146. [70] WANG H,ZHANG J,ZHANG X,et al. An oriented feature extraction and recognition approach for concave- convex mixed interacting features in cast-then-machined parts[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(4):1269-1288. [71] ZHANG D,WANG G,XIN Y,et al. Knowledge-driven manufacturing process innovation:A case study on problem solving in micro-turbine machining[J]. Micromachines,2021,12(11):1357. [72] LIANG J S. Study on ontological knowledge integration of micromachining for collaborative process[J]. Journal of Advanced Manufacturing Systems,2024,23(1):61-93. [73] HAN F,GOU T,ZHAO J,et al. A novel reuse method of machining process knowledge for similar ruled surface blades based on dual mapping[J]. Journal of Mechanical Science and Technology. 2024,38(10):5627-5638. [74] HUANG B,HE K,HUANG R,et al. Efficient NC process scheme generation method based on reusable macro and micro process fusion[J]. The International Journal of Advanced Manufacturing Technology,2022,120(3):2517-2735. [75] ASGHAR E,RATTI A,TOLIO T. An automated approach to reuse machining knowledge through 3D–CNN based classification of voxelized geometric features[J]. Procedia Computer Science,2023,217:1209-1216. [76] MANIKANDAN N,THEJASREE P,VIMAL K,et al. Applications of artificial intelligence tools in advanced manufacturing[M]. Singapore:Springer Nature,2023:29-42. [77] PLATHOTTAM S J,RZONCA A,LAKHNORI R,et al. A review of artificial intelligence applications in manufacturing operations[J]. Journal of Advanced Manufacturing Processing,2023,5(3):e10159. [78] HE F,YUAN L,MU H,et al. Research and application of artificial intelligence techniques for wire arc additive manufacturing:A state-of-the-art review[J]. Robotics and Computer-Integrated Manufacturing,2023,82:102525. [79] IGUAL L,SEGUí S. Supervised learning[M]. Heidelberg:Springer,2024:67-97. [80] ANGRISH A,BHARADWAJ A,STARLY B. MVCNN++:Computer-aided design model shape classification and retrieval using multi-view convolutional neural networks[J]. Journal of Computing and Information Science in Engineering,2021,21(1):011001. [81] LIU Y,OBUKHOV A,WEGNER J D,et al. Point2CAD:Reverse engineering CAD models from 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2024:3763- 3772. [82] QI Z,YU M,DONG R,et al. Vpp:Efficient conditional 3D generation via voxel-point progressive representation[J]. Advances in Neural Information Processing Systems,2023,36:26744-26763. [83] HANOCKA R,HERTZ A,FISH N,et al. Meshcnn:A network with an edge[J]. ACM Transactions on Graphics,2019,38(4):1-12. [84] XU X,LAMBOURNE J,JAYARAMAN P,et al. Brepgen:A b-rep generative diffusion model with structured latent geometry[J]. ACM Transactions on Graphics,2024,43(4):1-14. [85] XUE L,GAO M,XING C,et al. ULIP:Learning a unified representation of language,images,and point clouds for 3D understanding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2023:1179-1189. [86] ZHANG C,ZHOU G,HU J,et al. Deep learning-enabled intelligent process planning for digital twin manufacturing cell[J]. Knowledge-Based Systems,2020,191:105247. [87] ZHANG R,GUO Z,ZHANG W,et al. Pointclip:Point cloud understanding by clip[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:8552-8562. [88] LEE H,RYU K. Product and design feature-based similar process retrieval and modeling for mold manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2021,115(3):703-714. [89] YAN W,GU M,REN J,et al. Collaborative structure and feature learning for multi-view clustering[J]. Information Fusion,2023,98:101832. [90] WU Z,LIN X,LIN Z,et al. Interpretable graph convolutional network for multi-view semi-supervised learning[J]. IEEE Transactions on Multimedia,2023,25:8593-8606. [91] KNAPP G M,WANG H-P. Acquiring,storing and utilizing process planning knowledge using neural networks[J]. Journal of Intelligent Manufacturing,1992(3):333-344. [92] PEDDIREDDY D,FU X,WANG H,et al. Deep learning based approach for identifying conventional machining processes from CAD data[J]. Procedia Manufacturing,2020,48:915-925. [93] ZHAO C,MELKOTE S N. Learning the manufacturing capabilities of machining and finishing processes using a deep neural network model[J]. Journal of Intelligent Manufacturing,2023,35(4):1845-1865. [94] ZHANG Y,ZHANG S,HUANG R,et al. A deep learning-based approach for machining process route generation[J]. The International Journal of Advanced Manufacturing Technology,2021,115(11-12):3493-3511. [95] LAMBOURNE J G,WILLIS K D,JAYARAMAN P K,et al. Brepnet:A topological message passing system for solid models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,2021:12773-12782. [96] JAYARAMAN P K,SANGHI A,LAMBOURNE J G,et al. Uv-net:Learning from boundary representations[C]// Proceedings of the IEEE/CVF Conference On Computer Vision And Pattern Recognition,2021:11703-11712. [97] JONES B,HILDRETH D,CHEN D,et al. AutoMate:A dataset and learning approach for automatic mating of CAD assemblies[J]. ACM Transactions on Graphics,2021,40:227. [98] ZHANG H,ZHANG S,ZHANG Y,et al. Machining feature recognition based on a novel multi-task deep learning network[J]. Robotics and Computer-Integrated Manufacturing,2022,77:102369. [99] WU H,LEI R,PENG Y,et al. AAGNet:A graph neural network towards multi-task machining feature recognition[J]. Robotics and Computer-Integrated Manufacturing,2024,86:102661. [100] ZHANG S,GUAN Z,JIANG H,et al. BrepMFR:Enhancing machining feature recognition in B-rep models through deep learning and domain adaptation[J]. Computer Aided Geometric Design,2024,111:102318. [101] AHMED S F,ALAM M S B,HASSAN M,et al. Deep learning modelling techniques:Current progress,applications,advantages,and challenges[J]. Artificial Intelligence Review,2023,56(11):13521-13617. |
| [1] | 高书颜, 黄明坤, 黄涛, 张小明, 丁汉. 五轴加工通用刀具切触区高效计算及切削力预测[J]. 机械工程学报, 2025, 61(9): 132-141. |
| [2] | 赵萌, 周明, 胡天赏, 杨建伟, 王衍学, 王亮, 徐佩, 辛方晴. 群电极电火花高效加工镍基高温合金闭式整体叶轮[J]. 机械工程学报, 2025, 61(5): 364-374. |
| [3] | 李嘉佳, 易茜, 冯毅雄, 朱鹏兴, 易树平. 人本智造单元中人-智能系统协同双智能体工作机制研究[J]. 机械工程学报, 2025, 61(3): 105-118. |
| [4] | 黄思翰, 陈建鹏, 徐哲, 阎艳, 王国新. 基于大语言模型和机器视觉的智能制造系统人机自主协同作业方法[J]. 机械工程学报, 2025, 61(3): 130-141. |
| [5] | 周汶蓉, 熊世权, 杨秦秦, 叶驰川, 徐梦宇, 易茜, 冯毅雄, 易树平. 一种主观人因失效防范的核电建造协同质量智能见证方法[J]. 机械工程学报, 2025, 61(15): 324-338. |
| [6] | 高金吉. 人工自愈开辟智能流程制造向安健发展新途径[J]. 机械工程学报, 2025, 61(14): 117-129. |
| [7] | 徐自力, 高京京, 覃曼青, 何孟夫. 基于混合机器学习模型的两级加载下金属材料的剩余疲劳寿命预测方法[J]. 机械工程学报, 2025, 61(12): 73-82. |
| [8] | 韩飞, 宁梓淮. 辊弯成形技术研究现状与发展趋势[J]. 机械工程学报, 2025, 61(11): 279-300. |
| [9] | 张党, 赵永宣, 王振军, 张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究[J]. 机械工程学报, 2024, 60(6): 1-10,20. |
| [10] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
| [11] | 狄子钧, 袁东风, 李东阳, 梁道君, 周晓天, 信苗苗, 曹凤, 雷腾飞. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J]. 机械工程学报, 2024, 60(6): 82-90. |
| [12] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
| [13] | 张赛凡, 李博, 轩福贞. 激光选区熔化过程声发射信号的降噪与分类预测方法[J]. 机械工程学报, 2024, 60(6): 163-176. |
| [14] | 苏建涛, 董绍华, 朱诗敏. 多目标混合流水车间机器故障重调度问题研究[J]. 机械工程学报, 2024, 60(4): 438-448. |
| [15] | 牛静宜, 鲁思伟, 张倍宁, 杨春成, 李涤尘. 变组分复合材料3D打印工艺中机器学习算法对工艺参数预测有效性研究[J]. 机械工程学报, 2024, 60(21): 263-274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
