• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 293-300.doi: 10.3901/JME.2025.20.293

• 运载工程 • 上一篇    

扫码分享

轨道车辆一系锥形橡胶弹簧垂向幅频变力学模型研究

周荻, 代亮成, 池茂儒, 曾鹏程, 李旭阳, 郑阳   

  1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031
  • 收稿日期:2024-11-22 修回日期:2025-05-11 发布日期:2025-12-03
  • 作者简介:周荻,男,1999年出生,博士研究生。主要研究方向为车辆系统动力学。E-mail:zhoudi0339@163.com
    代亮成(通信作者)男,1991年生,助理研究员。研究方向为车辆系统动力学。E-mail liangcheng0812@163.com
    池茂儒,男,1973年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学。E-mail:cmr2000@163.com
  • 基金资助:
    国家自然科学基金(U21A20168)和国家重点研发计划(2022YFB4301303)资助项目。

Research on the Vertical Amplitude-dependent and Frequency-dependent Mechanical Model of the Primary Conical Rubber Springs for Railway Vehicles

ZHOU Di, DAI Liangcheng, CHI Maoru, ZENG Pengcheng, LI Xuyang, ZHENG Yang   

  1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031
  • Received:2024-11-22 Revised:2025-05-11 Published:2025-12-03

摘要: 橡胶弹簧作为悬挂元件能够有效衰减振动传递,在不同的振动频率下具有明显的非线性动态特性,而高频下非线性动态特性的准确描述是提高复杂工况下整车动力学性能预测的关键。为准确的描述一系锥形橡胶弹簧在中高频(10~80 Hz)范围下的强非线性特征,基于频变分数阶微分模型,通过改变分数阶阶数实现模型的频变特征,并对锥形橡胶弹簧垂向变形过程进行静态模型的形变修正,同时并联Berg摩擦力模型建立橡胶弹簧垂向幅频变力学模型。通过对一系锥形橡胶弹簧进行不同加载频率与加载幅值下的垂向动态试验,结合试验数据对垂向幅频变力学模型进行参数识别,进一步对不同加载条件下橡胶弹簧的试验值与仿真值进行对比。结果表明,一系锥形橡胶弹簧动态刚度随振动幅值增大而减小,随振动频率的增加呈现明显上升趋势;频变分数阶相对于常分数阶微分模型能够有效的兼顾低频及高频下橡胶动态特性,提出的橡胶弹簧垂向幅频变力学模型能够准确表征锥形弹簧动态性能的幅变特征及频变特征。

关键词: 锥形弹簧, 动态特性, 高频, 频变分数阶

Abstract: Rubber springs exhibit significant nonlinear dynamic characteristics under different vibration frequencies. As suspension components, rubber spring can attenuate the transmission of vibration effectively. Accurate simulation of nonlinear dynamic characteristics at high frequencies is crucial for improving the prediction of vehicle dynamic performance under complex working conditions. In order to estimate the strong nonlinear characteristics of the primary conical rubber springs in the medium-high frequencies (10~80 Hz) accurately, to establish the vertical amplitude-dependent and frequency-dependent mechanical model, obtaining a frequency-dependent fractional differential model which can simulate the frequency-dependent characteristics by changing the fractional order, then propose a modified static model to modify the vertical deformation of conical rubber springs and parallel the Berg friction model. Through vertical dynamic test of the primary conical rubber springs at different loading frequencies and loading amplitude, the relevant parameters of the vertical amplitude-dependent and frequency-dependent mechanical model can be obtained from the experimental data. Finally, comparing the simulation results with the experimental data under different loading conditions. It is shown that the dynamic stiffness of the primary conical rubber springs decreases with increasing vibration amplitude and shows a significant upward trend with increasing vibration frequency; frequency-dependent fractional differential model can estimate the dynamic characteristics of rubber under high-frequency as well as low-frequency conditions by contrast with the constant fractional differential model; the proposed vertical amplitude-dependent and frequency-dependent mechanical model can estimate the amplitude and frequency variation characteristics of the dynamic performance of conical springs accurately.

Key words: conical rubber, dynamic characteristics, high-frequency, frequency-dependent fractional order

中图分类号: