• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (19): 386-396.doi: 10.3901/JME.2025.19.386

• 制造工艺和装备 • 上一篇    

扫码分享

响应面法协同优化3D打印氧化铝多孔陶瓷的气孔率和抗弯强度

刘富初1,2, 王妙1,2, 张驰1, 林学雄3   

  1. 1. 中国地质大学(武汉)机械与电子信息学院 武汉 430074;
    2. 中国地质大学深圳研究院 深圳 518057;
    3. 湖北文理学院理工学院机械与汽车工程学院 襄阳 441025
  • 收稿日期:2025-02-01 修回日期:2025-07-02 发布日期:2025-11-24
  • 作者简介:刘富初,男,1987年出生,博士,副教授。主要研究方向为陶瓷增材制造和轻合金精密铸造。E-mail:liufuchu@cug.edu.cn
    林学雄(通信作者),男,1990年出生,硕士,高级工程师。主要研究方向为机械制造。E-mail:122809865@qq.com
  • 基金资助:
    国家重点研发计划(2023YFB4605603, 2022YFB4602502)、广东省基础与应用基础研究基金自然科学基金(2024A1515013258)、深圳市科技计划(JCYJ20240813114009013)、国家自然科学基金(52375395)、深圳市基础研究重点(JCYJ20220818102601004)、中国地质大学(武汉)教学实验室开放基金(SKJ2023125, SKJ2024121)、中国地质大学(武汉)中央高校基本科研业务费(2024XLB25, 2024XLB26)和国家级大学生创新创业训练计划(202410491047, 202410491048, 202410491058, S202410491017, S202410491102, X202410491055)资助项目。

Synergistic Optimization of Porosity and Flexural Strength of Alumina Porous Ceramics Fabricated by 3D Printing Method Based on Response Surface Methodology

LIU Fuchu1,2, WANG Miao1,2, ZHANG Chi1, LIN Xuexiong3   

  1. 1. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074;
    2. Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057;
    3. School of Engineering Machinery and Motor Vehicles, Science and Technology College of Hubei University of Arts and Science, Xiangyang 441025
  • Received:2025-02-01 Revised:2025-07-02 Published:2025-11-24

摘要: 氧化铝多孔陶瓷在过滤领域具有广泛应用,其气孔率和抗弯强度通常呈负相关性,而高效过滤材料需兼具高气孔率与高强度。采用浆料挤出3D打印技术,以填充率、打印层高和打印速度三个关键工艺参数进行响应面试验,分析打印参数间交互作用对氧化铝多孔陶瓷气孔率和抗弯强度的影响,并建立二阶非线性数学关联方程。结果表明,填充率与其他工艺参数的交互作用对气孔率和抗弯强度影响最显著,其次为打印速度和打印层高。当挤出头内径为0.41 mm、填充率为50%、层高为挤出头内径的67%、打印速度为1 100 mm/min时,氧化铝多孔陶瓷的气孔率为69.28%,抗弯强度为9.04 MPa,在XYZ方向的收缩率分别为3.86%、4.21%、5.63%,侧面粗糙度为18.16 μm。研究结果可为优化3D打印多孔陶瓷的成形工艺提供理论依据,并为高气孔率、高强度过滤陶瓷的设计与制备提供参考。

关键词: 氧化铝多孔陶瓷, 浆料挤出3D打印, 响应面试验, 抗弯强度, 气孔率

Abstract: Alumina porous ceramics have widespread applications in the filtration field, while its porosity and flexural strength typically exhibit a negative correlation. However, efficient filtration materials require a combination of high porosity and high strength. Alumina porous ceramics is fabricated by slurry extrusion 3D printing technology, based on response surface methodology, filling rate, layer height, and printing speed are analyzed as independent variables to assess their effects on the porosity and flexural strength of the sintered alumina ceramics. The interaction effects among process parameters are analyzed, and a second-order nonlinear correlation mathematical equation are established. The results indicate that the interaction between filling rate and other process parameters have the most significant effect on porosity and flexural strength, followed by printing speed and layer height. The optimal process parameters for synergistic optimization of porosity and flexural strength are obtained, presenting a nozzle diameter of 0.41 mm, a filling rate of 50%, a layer height of 67% of the nozzle diameter, and a printing speed of 1 100 mm/min, the corresponding alumina porous ceramics achieved a porosity of 69.28%, a flexural strength of 9.04 MPa, with shrinkage rates of 3.86%, 4.21%, and 5.63% in the X, Y, and Z directions, respectively, and a side surface roughness of 18.16 μm. These findings provide a theoretical basis for optimizing the 3D printing process of porous ceramics and offer valuable insights for the design and fabrication of high-porosity, high-strength filtration ceramics.

Key words: alumina porous ceramics, slurry extrusion 3D printing, response surface methodology, flexural strength, porosity

中图分类号: