• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 1-11.doi: 10.3901/JME.2025.18.001

• 仪器科学与技术 • 上一篇    

扫码分享

基于多维特征聚类的锂离子电池析锂诊断方法

歹润润, 魏中宝, 胡鉴   

  1. 北京理工大学机械与车辆学院 北京 100081
  • 收稿日期:2024-10-15 修回日期:2025-03-01 发布日期:2025-11-08
  • 作者简介:歹润润,男,2001年出生。主要研究方向为锂离子电池低温析锂故障诊断。E-mail:3120230331@bit.edu.cn;魏中宝(通信作者),男,1988年出生,教授,博士研究生导师。主要研究方向为新能源汽车,动力电池系统管理与控制。E-mail:weizb@bit.edu.cn;胡鉴,男,1997年出生,博士研究生。主要研究方向为锂离子电池状态估计及故障诊断。E-mail:3120190329@bit.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB2405700)和国家自然科学基金联合基金(U22A20227)资助项目

Lithium Plating Diagnostic Method for Lithium-ion Batteries Based on Multidimensional Features and Cluster Analysis

DAI Runrun, WEI Zhongbao, HU Jian   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
  • Received:2024-10-15 Revised:2025-03-01 Published:2025-11-08

摘要: 锂离子电池负极析锂是制约其安全性和寿命的关键问题之一。为提高锂离子电池应用的安全性并延长使用寿命,提出一种基于多维特征挖掘和聚类分析的锂离子电池析锂诊断方法。设计低温析锂试验,采集电池试验循环数据。建立高精度电池等效电路模型,提出基于模型参数辨识和容量增量分析的析锂特征提取方法,以及基于主成分分析法的特征空间降维方法。在此基础上,通过采用粒子群算法优化的基于密度的聚类算法,提出锂离子电池析锂故障的自适应分级诊断方法,并根据电池析锂前后容量差值和物理检测手段检验所提方法的准确性。诊断结果表明,基于多维度特征的析锂诊断结果最优,相较基于电池模型特征的单维析锂诊断方法,漏诊率下降8.00%,较基于容量增量曲线特征的单维析锂诊断方法,漏诊率下降8.00%,误诊率下降3.63%;同时扫描电子显微镜、电感耦合等离子体检验结果与诊断结果一致,能够较为准确诊断出轻度析锂和严重析锂,实现了锂离子电池析锂的分级诊断。

关键词: 锂离子电池, 析锂诊断, 聚类分析, 模型参数辨识, 主成分分析

Abstract: Lithium plating on the negative electrode is one of the critical issues restricting the safety and lifespan of lithium-ion batteries. To enhance the safety and extend the lifespan of lithium-ion batteries, a lithium plating diagnosis method is proposed which is based on multidimensional feature mining and cluster analysis. Low-temperature lithium plating experiments are designed, and experimental data of batteries are collected. A high-precision equivalent circuit model of the battery is established, and a lithium plating feature extraction method based on model parameter identification and capacity increment analysis, as well as a feature space dimension reduction method based on principal component analysis, are proposed. Based on this, an adaptive grading diagnosis method for lithium-ion battery lithium plating faults is proposed using a density-based clustering algorithm optimized by particle swarm optimization, and the accuracy of the proposed method is verified based on the difference in capacity before and after lithium plating and scanning physical detection methods. The diagnostic results show that the lithium plating diagnosis results based on multi-dimensional features are optimal. Compared with single-dimensional lithium plating diagnosis methods based on battery model features, the missed diagnosis rate decreases by 8.00%, and compared with single-dimensional lithium plating diagnosis methods based on capacity increment curve features, the missed diagnosis rate decreases by 8.00% and the misdiagnosis rate decreases by 3.63%. At the same time, scanning electron microscope and inductively coupled plasma inspection results are consistent with diagnostic results, and can accurately diagnose mild and severe lithium plating, realizing graded diagnosis of lithium plating in lithium-ion batteries.

Key words: lithium-ion batteries, lithium plating detection, cluster analysis, model parameter identification, principal component analysis

中图分类号: