• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (11): 171-182.doi: 10.3901/JME.2025.11.171

• 机械动力学 • 上一篇    

扫码分享

内核噪声拓展自适应多元变分模态分解及机械复合故障诊断应用

孙世博1, 袁静1, 赵倩1, 蒋会明1, 魏颖2   

  1. 1. 上海理工大学机械工程学院 上海 200093;
    2. 上海无线电设备研究所 上海 201109
  • 收稿日期:2024-06-14 修回日期:2024-12-01 发布日期:2025-07-12
  • 作者简介:孙世博,男,1999年出生。主要研究方向为机械设备故障诊断和故障特征提取。E-mail:sunshibo_cc@163.com;袁静(通信作者),女,1983年出生,博士,教授。主要研究方向为机械设备故障诊断、动态信号处理、故障特征提取。E-mail:yuanjing@usst.edu.cn
  • 基金资助:
    国家自然科学基金(52375111,52205113)和上海市青年科技英才扬帆计划(21YF1430600)资助项目。

Kernel Noise-expanded Self-adaptive Multivariate Variational Mode Decomposition and Its Application to Mechanical Compound Fault Diagnosis

SUN Shibo1, YUAN Jing1, ZHAO Qian1, JIANG Huiming1, WEI Ying2   

  1. 1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
    2. Shanghai Radio Equipment Institute, Shanghai 201109
  • Received:2024-06-14 Revised:2024-12-01 Published:2025-07-12

摘要: 为解决复合故障特征信息难以有效同步获取问题,提出一种内核噪声拓展自适应多元变分模态分解的机械复合故障诊断方法。首先,利用核主成分分析和奇异熵增量曲率谱设计多元噪声同步估计技术,通过对多元信号高维空间模型进行降维和重构处理,有效地从非线性原始信号中同步获取多元噪声分量。其次,利用同步估计的多元噪声分量构造内核噪声拓展模型作为输入数据源,提高相应分解层带宽选取准确性以改善模态混淆现象,为复合故障特征有效分离提供解决方案。同时,结合带宽平衡参数更新策略,为内核噪声拓展模型设计用于递归并行分解的新目标函数,自适应选择最优分解层数和各分解层多元本征模态函数(Intrinsic mode function,IMF)带宽平衡参数。最终,输出完整多元期望IMF集合以同步提取复合故障特征。由工程实例结果表明,所提方法可有效应用于机车走行部轴承和星载天线指向机构谐波减速器复合故障诊断。

关键词: 多元变分模态分解, 核主成分分析, 多元噪声利用, 同步提取, 复合故障诊断

Abstract: In order to solve the difficulties of effectively and synchronously access to compound fault feature information, a kernel noise-expanded self-adaptive multivariate variational mode decomposition is proposed as a mechanical compound fault diagnosis method. First, kernel principal component analysis and curvature spectrum of increment of singular entropy are used to design multivariate noise synchronization estimation technique, which effectively obtains multivariate noise components from nonlinear original signals synchronously by dimensionality reduction and reconstructing process for the high-dimensional space model of multivariate signals. Second, the synchronously estimated multivariate noise components are used to construct a kernel noise-expanded model as the input data source to improve the selection accuracy of bandwidths of the corresponding decomposition layer and to improve mode mixing phenomenon and provide a solution for the effective separation of compound fault features. Meanwhile, combining with a bandwidth balance parameter updating strategy, a new objective function for recursive parallel decomposition is designed for the kernel noise-expanded model, and the optimal number of decomposition layers and the multivariate intrinsic mode function (IMF) bandwidth balance parameter of each decomposition layer are selected adaptively. At last, complete multivariate expected IMF sets are output to synchronize extraction of compound fault features. The results of engineering cases show that the proposed method can be effectively used for compound fault diagnosis including locomotive rolling bearing, and harmonic reducer of a pointing mechanism for spaceborne antenna.

Key words: multivariate variational mode decomposition, kernel principal component analysis, multivariate noise utilization, synchronous extraction, compound fault diagnosis

中图分类号: