• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 251-265.doi: 10.3901/JME.2025.12.251

• 运载工程 • 上一篇    

扫码分享

基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法

来鑫1, 翁嘉辉1, 杨一鹏2, 孙宇飞2, 周龙1, 郑岳久1, 韩雪冰3   

  1. 1. 上海理工大学机械工程学院 上海 200093;
    2. 武汉船用电力推进装置研究所 武汉 430064;
    3. 清华大学车辆与运载学院 北京 100084
  • 收稿日期:2024-07-15 修回日期:2024-12-30 发布日期:2025-08-07
  • 作者简介:来鑫,男,1983 年出生,博士,教授,博士研究生导师。主要研究方向为先进电池管理与智能控制、退役锂离子电池的梯次利用、动力电池全生命周期评价与可持续发展。E-mail:laixin@usst.edu.cn;周龙(通信作者),男,1987年出生,高级实验师。主要研究方向为电池全寿命周期管理。E-mail:zhoulong925@126.com
  • 基金资助:
    国家自然科学基金(52277223, 51977131)和上海市白玉兰人才计划浦江(23PJD062)资助项目。

State of Charge Estimation of Lithium-ion Battery Pack Based on BPNN-EKF-GD-RF Algorithm

LAI Xin1, WENG Jiahui1, YANG Yipeng2, SUN Yufei2, ZHOU Long1, ZHENG Yuejiu1, HAN Xuebing3   

  1. 1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
    2. Wuhan Institute of Marine Electric Propulsion, Wuhan 430064;
    3. School of Vehicle and Transportation, Tsinghua University, Beijing 100084
  • Received:2024-07-15 Revised:2024-12-30 Published:2025-08-07

摘要: 锂离子电池模组的荷电状态估计(State-of-charge,SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network,BPNN)与扩展卡尔曼滤波(Extended Kalman filter,EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent,GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest,RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。

关键词: SOC估计, BP神经网络, 扩展卡尔曼滤波, 梯度下降算法, 随机森林, 锂离子电池组

Abstract: The state-of-charge(SOC) estimation of lithium-ion battery modules is recognized as a critical internal state that significantly impacts battery performance and serves as the foundation for other state estimations in battery packs. However, the accuracy of SOC estimation is easily influenced by external factors such as temperature, and the inconsistency among batteries poses additional challenges for SOC estimation of cells within the pack. A method combining the back propagation neural network(BPNN) and the extended Kalman filter(EKF) algorithm is proposed for SOC estimation of battery packs. In this method, the terminal voltage of the "leader" battery at different temperatures is first estimated using BPNN based on the prior SOC. The estimated voltage is then compared with the measured voltage, and the posterior SOC estimation is completed using the EKF algorithm. Simultaneously, the output layer weights of the BPNN are updated using the gradient descent(GD) algorithm based on the voltage difference to accelerate algorithm convergence. Furthermore, a correction strategy is designed, and the random forest(RF) algorithm is utilized to adjust the SOC estimation of the "follower" batteries. Experimental results demonstrate that the proposed BPNN-EKF-GD-RF algorithm achieves accurate SOC estimation for battery packs under varying temperatures, with the SOC estimation error remaining within 2.5% at room temperature and the maximum SOC estimation error for cells in the pack not exceeding 3.2% under temperature variations. The research results provide a high-precision and low-complexity solution for SOC estimation of lithium-ion battery packs in complex environments.

Key words: SOC estimation, BP neural network, extended Kalman filter, gradient descent algorithm, random forest algorithm, lithium-ion battery pack

中图分类号: