• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 40-56.doi: 10.3901/JME.2025.16.040

• 仪器科学与技术 • 上一篇    

扫码分享

基于勒贝格采样的锂电池“单体→成组”迁移驱动寿命预测

吕东祯1, 张斌2, 向家伟1   

  1. 1. 温州大学机电工程学院 温州 325035;
    2. 南卡罗来纳大学工程与计算学院 哥伦比亚 29208 美国
  • 接受日期:2024-09-25 出版日期:2025-03-03 发布日期:2025-03-03
  • 作者简介:吕东祯,男,1994年出生,讲师。主要研究方向为锂电池组的寿命预测、智能运维与健康管理。E-mail:lvdongzhen@hrbeu.edu.cn;张斌,男,1972年出生,博士,副教授。主要研究方向为预测与健康管理,智能系统和控制。E-mail:zhangbin@cec.sc.edu;向家伟(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为状态监测与故障诊断,智能运维与健康管理,有限元/边界元分析,机械动力学。E-mail:wxw8627@163.com
  • 基金资助:
    国家自然科学基金青年基金(52375116)、国家自然科学基金面上基金(52405126)和温州市基础性科研基金(G20240004)资助项目

Battery Life Prediction through “Cell→Pack” Transfer Pipeline Using Lebesgue Sampling

Lü Dongzhen1, ZHANG Bin2, XIANG Jiawei1   

  1. 1. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035;
    2. College of Engineering and Computing, University of South Carolina, Columbia 29208, USA
  • Accepted:2024-09-25 Online:2025-03-03 Published:2025-03-03

摘要: 单体电池寿命预测研究是当前的热点,而电池组的退化过程由于涉及多个单体电池的叠加效应,进一步增加了预测的复杂性。一方面,现有电池组寿命预测研究的样本数量较为有限,且过度依赖于对未来电流和电压信息的提前获取,难以实现真正的寿命预测,无法满足实际应用需求。另一方面,随着机器学习方法的广泛应用,计算资源日益紧张,因此在保证预测准确性的前提下,如何大幅提升预测方法的计算效率成为一项亟待解决的重要课题。为此,首先设计试验对单体电池和电池组之间的退化过程进行了研究。然后,提出一种基于勒贝格采样的锂电池“单体→成组”迁移驱动寿命预测方法。该方法引入勒贝格采样技术,实现时间空间特征的提取以及差分模型的构建,优化目标域和源域之间的邻域差异,快速精准地计算勒贝格抵达时间的概率分布。在仅采用单体电池的退化数据进行训练后就成功预测电池组的失效寿命。所提出的方法在早期预测场景以及实时预测场景均获得了1.5%左右的寿命预测误差,在此基础上还实现了毫秒级至秒级的计算效率,整体的预测精度以及计算效率均大幅领先现有诸多成熟的寿命预测方法。

关键词: 勒贝格采样, 寿命预测, 电池组, 剩余寿命, 计算效率

Abstract: Research on lithium-ion battery lifetime prediction is a hot topic, but the complex degradation process involving multiple cells complicates the task. Current studies often have limited sample sizes and rely heavily on future current and voltage data, making true prediction impractical for real-world applications. Additionally, the extensive use of machine learning methods has caused a significant strain on computational resources. Therefore, significantly reducing the computational cost of prediction methods while ensuring prediction accuracy is of great practical significance. To address this, we first designed experiments to study the degradation process between individual batteries and battery packs. Then, we proposed a Lebesgue sampling-based migration-driven lifetime prediction method for lithium batteries, transitioning from individual cells to groups. This method introduces Lebesgue sampling techniques to extract features and construct differential models, optimizing neighborhood differences between the target domain and the source domain, and efficiently computing the probability distribution of the arrival time at the Lebesgue limit. The method trains on degradation data from individual batteries, successfully predicting the failure life of the battery pack. The proposed method achieved a prediction error of around 1.5% in both early and real-time prediction scenarios, while also achieving computational efficiency in the millisecond to second range, significantly surpassing many existing mature lifetime prediction methods in both accuracy and efficiency.

Key words: lebesgue sampling, life time prediction, battery packs, remaining useful life, computing efficient

中图分类号: