• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 284-298.doi: 10.3901/JME.2025.03.284

• 机械动力学 • 上一篇    

扫码分享

行星轮系竞争失效的寿命预测及试验研究

汪汉明1,2, 董庆兵1,2, 陈壮1,2, 赵波3, 史修江4   

  1. 1. 重庆大学高端装备机械传动全国重点实验室 重庆 400044;
    2. 重庆大学机械与运载工程学院 重庆 400044;
    3. 中山大学海洋工程与技术学院 广州 519000;
    4. 哈尔滨工程大学动力与能源工程学院 哈尔滨 150001
  • 收稿日期:2024-02-09 修回日期:2024-08-13 发布日期:2025-03-12
  • 作者简介:汪汉明,男,1998年出生。主要研究方向为齿轮疲劳寿命预测。E-mail:202107021169t@cqu.edu.cn;董庆兵(通信作者),男,1985年出生,博士,教授,博士研究生导师。主要研究方向为传动件的接触摩擦、润滑优化技术、界面疲劳断裂等。E-mail:qdong002@cqu.edu.cn
  • 基金资助:
    重庆大学机械传动国家重点实验室开放课题、国家重点研发计划(2020YFB2010100)、国家自然科学基金(52275175)和两机重大专项(J2019-IV-0018-0086)(SKLMT-MSKFKT-202211)资助项目。

Life Prediction of Planetary Gearbox Based on Competing Failure Mechanisms and Experimental Study

WANG Hanming1,2, DONG Qingbing1,2, CHEN Zhuang1,2, ZHAO Bo3, SHI Xiujiang4   

  1. 1. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044;
    2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    3. School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou 519000;
    4. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001
  • Received:2024-02-09 Revised:2024-08-13 Published:2025-03-12

摘要: 齿轮在传动过程承受着交变载荷的作用,渐开线的特殊结构造成啮合过程中滑/滚比不断变化,以及齿面形貌特征导致摩擦性能的改变,最终引起齿面接触疲劳或齿根弯曲疲劳,行星轮系的服役寿命取决于齿圈、行星轮、太阳轮等各类型齿轮在接触疲劳/弯曲疲劳竞争作用下的最小寿命。针对某直齿行星轮系的传动特点,建立了包括齿圈-行星轮-太阳轮等构件的有限元模型,考虑了循环加载过程中时变参数确定的弹流润滑时变摩擦系数,根据有限元获得的多轴方向弹性场,采用Brown-Miller、Fatemi-Socie、Morrow和Smith-Waston-Topper等临界平面法,评估行星轮系疲劳裂纹萌生位置和竞争失效的寿命分布,同时基于试验测得的齿面硬度梯度拟合得到残余应力水平,并对疲劳寿命公式进行修正。最后,开展同等工况的行星轮系疲劳试验,研究了失效齿轮表面蚀坑的演变过程,并验证模型的有效性和准确性。结果表明,该齿轮箱接触疲劳强度远小于弯曲疲劳强度,Fatemi-Socie方法在评估齿轮接触疲劳寿命具有更高的准确性,太阳轮由于其各齿与不同行星轮依次啮合,因此最先发生接触疲劳,点蚀首先出现在节线靠近齿根的亚表面,考虑残余应力的接触疲劳寿命和位置与试验结果一致性良好。本研究发展的建模方法可为其他类型传动件的竞争失效疲劳预测提供思路。

关键词: 行星轮系, 多轴疲劳, 竞争失效, 残余应力, 寿命预测

Abstract: Gears are designed to carry out alternating loads during the transmission process, and the special structure of their involutes causes changes in the sliding/rolling ratio during the meshing process as well as changes in the friction performance caused by the morphology characteristics of the tooth surfaces, ultimately leading to contact fatigue or tooth root bending fatigue. The service life of planetary gear trains depends on the minimum life of various types of gears such as gear rings, planetary gears and sun gears under the competition of contact fatigue and bending fatigue. A finite element model is built up for a spur planetary geartrain, and the time-varying friction coefficient is taken into account. Critical plane methods based on the multi-axial fatigue criteria, such as Brown-Miller method, Fatemi-Socie method, Morrow method and Smith-Waston-Topper method are used to evaluate the fatigue crack initiation location and life distribution of competitive failure in planetary gear train. The residual stress from surface to core is fitted based on the experimentally measured hardness, and the fatigue parameters are then modified accordingly. Finally, fatigue tests are conducted for planetary gear trains under the same operating conditions to investigate the evolution process of surface pits on failed gears and verify the effectiveness and accuracy of the developed model. The results show that the contact fatigue strength of the gearbox is much lower than the bending fatigue strength. The Fatemi-Socie method has higher accuracy in evaluating the contact fatigue life of gears. The sun gear more likely suffers from contact fatigue compared with other gears due to its teeth meshing with different planetary gears in sequence, and pitting first occurs on the subsurface near the tooth root of the pitch line. The contact fatigue life and location considering residual stress are consistent with the experimental results. The modeling method developed in this study can provide insight into the life prediction of planetary gearboxes based on competitive failure fatigue, and the method can be used for the fatigue properties of other types of transmission components.

Key words: spur planetary gearbox, multi-axial fatigue, competing failure mechanism, residual stress, life prediction

中图分类号: