• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 293-304.doi: 10.3901/JME.2025.16.293

• 运载工程 • 上一篇    

扫码分享

基于波高与光伏实时预测的光柴储无人艇能量管理策略

付助1,2, 陈伟民3, 陈俐1,2   

  1. 1. 上海交通大学动力装置及自动化研究所 上海 200240;
    2. 上海交通大学海洋工程国家重点实验室 上海 200240;
    3. 上海船舶运输科学研究所有限公司 上海 200135
  • 接受日期:2024-08-10 出版日期:2025-03-22 发布日期:2025-03-22
  • 作者简介:付助,男,1999年出生,博士研究生。主要研究方向为多能源混合动力系统能量管理策略。E-mail:zhu_fu@sjtu.edu.cn;陈俐(通信作者),女,1973年出生,博士,教授,博士研究生导师。主要研究方向为智能绿色动力系统设计与控制,包括多能源混合动力系统、机器学习模型、多目标优化设计等。E-mail:li.h.chen@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4300803)、水路交通控制全国重点实验室开放课题(QZ2022-Z002)和上海交通大学“深蓝计划”基金(WH410260401/006)资助项目

Energy Management Strategy Based on Wave Height and Photovoltaic Real-time Prediction for PV-diesel-battery Unmanned Surface Vessel

FU Zhu1,2, 3, CHEN Weimin1,2   

  1. 1. Institute of Marine Power Plant and Automation, Shanghai Jiao Tong University, Shanghai 200240;
    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    3. Shanghai Ship and Shipping Research Institute Co., Ltd., Shanghai 200135)
  • Accepted:2024-08-10 Online:2025-03-22 Published:2025-03-22

摘要: 光柴储混合动力系统可延长常值守无人艇航程,支持不间断执行任务,提升深远海海上维权水平。然而在复杂海况下,波高时变性与光伏间歇性引起动力系统负载侧和供能侧双边功率大幅波动,给能量管理带来挑战。为此,提出一种基于波高与光伏实时预测的能量管理策略。建立基于卷积神经网络(Convolutional neural network,CNN)和长短期记忆网络(Long short-term memory,LSTM)相结合的CNN-LSTM混合模型进行波高与太阳辐射强度实时预测,进而获得复杂海况下未来负载需求功率和光伏功率;采用模型预测控制(Model predictive control,MPC)进行能量流实时分配,并与采用传统预测方法的MPC能量管理策略相比较,硬件在环试验结果表明提出的方法在高海况下显著提升能效;以最大光伏功率和平均负载需求功率构建的无量纲工况因子可反映不同海况特征。相关性分析表明,无量纲工况因子与能效提升度显著相关。提出的方法可提高光柴储无人艇能量管理策略的航行环境适应性,具有工程指导意义。

关键词: 光柴储无人艇, 能量管理, 波高, 光伏, 卷积神经网络-长短期记忆网络, 无量纲工况因子

Abstract: The PV-diesel-battery hybrid power system can extend the range of unmanned surface vessel for maritime patrol, keep missions uninterrupted, and improve the level of maritime rights protection in remote sea area. However, fluctuations in load demand power will occur due to the time-varying characteristics of wave height, and the photovoltaic power will change significantly due to the intermittency of solar irradiation density under complex sea conditions, which brings challenges to energy management. A real-time energy management strategy based on wave height and solar irradiation density prediction is proposed. A hybrid CNN-LSTM model combined with convolutional neural networks(CNN) and long short-term memory(LSTM) is utilized to predict wave height and solar irradiation density for acquiring load demand power and photovoltaic power. Model predict control (MPC) strategy is subsequently employed to optimize energy flow. The comparison is carried out between the proposed method and MPC with traditional prediction method. The results of hardware-in-the-loop experiment show that the proposed method significantly improves energy efficiency under high sea states. The dimensionless sea condition factor, composed of the maximum photovoltaic power and the average load demand power, is proposed to quantify the characteristic of complex sea conditions. The correlation analysis shows that the dimensionless sea condition factor is significantly correlated with the energy efficiency improvement. The proposed method has the potential to enhance the complex environment adaptability of the energy management strategy employed by the PV-diesel-battery vessels, thereby providing valuable engineering guidance.

Key words: PV-diesel-battery vessels, energy management strategy, wave height, solar irradiation density, CNN-LSTM, dimensionless sea condition factor

中图分类号: