• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (6): 236-244.doi: 10.3901/JME.2024.06.236

• 材料科学与工程 • 上一篇    下一篇

扫码分享

GTAW熔池激光条纹动态行为与熔透预测方法研究

李春凯1,2, 王嘉昕1,2, 石玗1, 代悦1,2   

  1. 1. 兰州理工大学省部共建有色金属先进材料加工与再利用国家重点实验室 兰州 730050;
    2. 兰州理工大学温州泵阀工程研究院 温州 325100
  • 收稿日期:2023-05-31 修回日期:2023-11-10 出版日期:2024-03-20 发布日期:2024-06-07
  • 通讯作者: 李春凯,男,1990年出生,副研究员。主要研究方向为智能焊接及焊接过程自动化。E-mail:15339316249@163.com
  • 作者简介:王嘉昕,男,1998年出生。主要研究方向为焊接过程自动化。E-mail:294354967@qq.com
  • 基金资助:
    国家自然科学基金(52365048)、浙江省自然科学基金(LQ21E050023)、甘肃省科技重大专项(22ZD6GA008)和甘肃省高校科研创新平台重大培育(2024CXPT-06)资助项目。

Study on the Dynamic Behavior of GTAW Melt Pool Laser Streak and Penetration Prediction Method

LI Chunkai1,2, WANG Jiaxin1,2, SHI Yu1, DAI Yue1,2   

  1. 1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
    2. Wenzhou Engineering Institute of Pump & Valve, Lanzhou University of Technology, Wenzhou 325100
  • Received:2023-05-31 Revised:2023-11-10 Online:2024-03-20 Published:2024-06-07

摘要: 熔透状态是影响焊缝质量的关键因素之一,可靠传感并实时预测焊缝熔透状态对于提升焊接质量以及焊接智能化水平具有非常重要的意义。利用激光视觉法对低频脉冲钨极氩弧焊(Pulsed gas tungsten arc welding, P-GTAW)不同熔透状态下的反射激光条纹进行了检测,通过建立熔池表面标准模型分析了激光条纹图像动态行为与三种熔透状态熔池自由表面之间(未熔透、临界熔透、全熔透)的相关性,并基于深度学习卷积神经网络建立了GTAW熔透预测模型。研究表明:P-GTAW激光条纹的动态行为与熔池背面熔透状态、熔池表面振荡模式之间存在明确的光学对应关系,所建立从激光条纹图像到GTAW背面熔透状态的端到端卷积神经网络模型能够准确分类未熔透、临界熔透和全熔透三种状态,且分类准确率可达到98.1%,能够实现焊缝熔透状态实时传感及预测。

关键词: 熔透检测, 激光视觉法, 深度学习, 熔池振荡, 端到端神经网络, GTAW

Abstract: Weld penetration state is one of the key factors affecting the quality of the weld seam. Reliable sensing and real-time prediction of the weld penetration state is important to improve the quality of the weld and the level of welding intelligence. Laser vision was used to detect the reflected laser streaks in different penetration states of low-frequency pulsed gas tungsten arc welding (P-GTAW). The correlation between the dynamic behavior of laser streak images and the free surface of the melt pool in three penetration states was analyzed by establishing a standard model of the melt pool surface. Developed a GTAW fusion penetration prediction model based on deep learning convolutional neural networks. Experimental results show that:The dynamic behavior of the P-GTAW laser streak has a clear optical correspondence with the melt penetration state on the back side of the melt pool and the surface oscillation mode of the melt pool. The developed end-to-end convolutional neural network model from laser streak image to GTAW backside melt-through state can accurately classify three states with an accuracy of 98.1%, enabling real-time sensing and prediction of weld melt-through state.

Key words: penetration inspection, laser vision method, deep learning, melt pool oscillation, end-to-end neural network, GTAW

中图分类号: