机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 1-20.doi: 10.3901/JME.2024.22.001
顾磊1, 王鹏程1, 闫耀天2, 陈海燕1, 李文亚1
收稿日期:
2024-05-11
修回日期:
2024-09-04
出版日期:
2024-11-20
发布日期:
2025-01-02
作者简介:
顾磊,男,2000年出生。主要研究方向为精密钎焊连接技术。E-mail:gulei2221730355@163.com;王鹏程(通信作者),男,1996年出生,博士后。主要研究方向为先进异种材料钎焊。E-mail:wangpc@nwpu.edu.cn
基金资助:
GU Lei1, WANG Pengcheng1, YAN Yaotian2, CHEN Haiyan1, LI Wenya1
Received:
2024-05-11
Revised:
2024-09-04
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.001
摘要: 负热膨胀(Negative thermal expansion,NTE)材料因其具有热缩冷胀的性质,故在调控材料热膨胀系数(Coefficient of thermal expansion, CTE)方面表现出独特的优势,在复合材料和钎焊领域展现出巨大的潜力。目前NTE材料已在航天、生物医学以及电子信息等领域得到了广泛的应用。在制备复合材料时,将NTE材料作为增强相与正热膨胀材料结合,可以有效调节复合材料的热膨胀系数,将其控制在极低或接近零的水平。在金属基复合材料的制备过程中通过添加NTE增强相,以降低金属基复合材料的热膨胀系数,有效地减少了因热膨胀引起的内部应力,从而延长材料的使用寿命。在钎焊领域中,由于异种母材进行钎焊时热膨胀系数差异较大,接头中会产生较大的残余应力,从而严重影响钎焊接头的性能。在复合钎料中引入NTE材料降低其热膨胀系数,进而减小母材与钎缝之间的热失配,从而有效地降低了接头处的残余应力,以达到提高接头力学性能的目的。
中图分类号:
顾磊, 王鹏程, 闫耀天, 陈海燕, 李文亚. 负膨胀材料在复合材料制备和钎焊中的研究进展[J]. 机械工程学报, 2024, 60(22): 1-20.
GU Lei, WANG Pengcheng, YAN Yaotian, CHEN Haiyan, LI Wenya. Review on Negative Expansion Materials in Composite Materials and Brazing[J]. Journal of Mechanical Engineering, 2024, 60(22): 1-20.
[1] 王献立,付林杰,许坤. 负热膨胀材料的研究及应用[J]. 信息记录材料,2018,19(12):38-39. WANG Xianli,FU Linjie,XU Kun. Developments in study and applying of negative thermal expansion materials[J]. Information Recording Materials,2018,19(12):38-39. [2] 程永光. A2M3O12系列负热膨胀材料的吸水性、相变和光学性能研究[D]. 郑州:郑州大学,2017. CHENG Yongguang. Hygroscopicity,phase transition and optical property of A2M3O12 family[D]. Zhengzhou:Zhengzhou University,2017. [3] 徐滨士,李长久,刘世参,等. 表面工程与热喷涂技术及其发展[J]. 中国表面工程,1998,11(1):3-9. XU Binshi,LI Changjiu,LIU Shican,et al. Surface engineering and thermal spraying technology and their developments[J]. China Surface Engineering,1998,11(1):3-9. [4] 刘亚明. 几种典型材料负膨胀机理的第一性原理研究[D]. 郑州:郑州大学,2016. LIU Yaming. First-principles study of mechanism of several typical negative thermal expansion compounds[D]. Zhengzhou:Zhengzhou University,2016. [5] 刘红亮. GH4738/GH3536异种合金钎焊连接及焊后热处理的工艺与机理研究[D]. 北京:北京科技大学,2023. LIU Hongliang. Process and mechanism related to the brazing cycle and postbrazing heat treatment of the GH4738/GH3536 dissimilar superalloys[D]. Beijing:University of Science and Technology Beijing,2023. [6] 汤鑫,张杰,马天宝. 颗粒增强金属基复合材料界面微观结构和性能研究进展[J]. 中国表面工程,2022,35(3):16-30. TANG Xin,ZHANG Jie,MA Tianbao. Research progress on interfacial micro structure and properties of particle reinforced metal matrix composites[J]. China Surface Engineering,2022,35(3):16-30. [7] IDUSUYI N,OLAYINKA J I. Dry sliding wear characteristics of aluminium metal matrix composites:A brief overview[J]. Journal of Materials Research and Technology,2019,8(3):3338-3346. [8] JOSEPH J,KUMARAGURUBARAN B,Sathish S. Effect of MoS2 on the wear behavior of aluminium (AlMg0.5Si) composite[J]. Silicon,2020,12(6):1481-1489. [9] SELVAKUMAR N,NARAYANASAMY P. Optimization and effect of weight fraction of MoS2 on the tribological behavior of Mg-TiC-MoS2 hybrid composites[J]. Tribology Transactions,2016,59(4):733-747. [10] MISTRY J M,GOHIL P P. An overview of diversified reinforcement on aluminum metal matrix composites:Tribological aspects[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2016,231(3):399-421. [11] MAVHUNGU S T,AKINLABI E T,ONITIRI M A,et al. Aluminum matrix composites for industrial use[J]. Procedia Manufacturing,2017,7:178-182. [12] ZHOU Y X,ZHOU C,WANG Z J,et al. The effect of interface reaction on the thermal and mechanical properties of Mn3.2Zn0.5Sn0.3N/Al composites[J]. Ceramics International,2022,48(18):25826-25832. [13] 周畅. 基于零膨胀ZrW2O8/Al复合材料设计与表征[D]. 哈尔滨:哈尔滨工业大学,2017. ZHOU Chang. Design and characterization of ZrW2O8/Al composites based on zero thermal expansion[D]. Harbin:Harbin Institute of Technology,2017. [14] 曹贺. 近零膨胀反钙钛矿锰氮化物颗粒增强铝基复合材料的设计、制备与性能研究[D]. 上海:上海交通大学,2022. CAO He. Study on design,preparation and properties of near-zero thermal expansion antiperovskite manganese nitride particle reinforced aluminum matrix composites[D]. Shanghai:Shanghai Jiao Tong University,2022. [15] SEKULIĆ D P. Advances in brazing:Science,technology and applications[M]. Holland:Elsevier,2013. [16] 孙良博. 用于多孔与致密Si3N4陶瓷连接的LMAS微晶玻璃体系设计与微观机理[D]. 哈尔滨:哈尔滨工业大学,2021. SUN Liangbo. Design of LMAS glass-ceramic and micromechanisms for joining porous and dense Si3N4 ceramics[D]. Harbin:Harbin Institute of Technology,2021. [17] 张瑜,徐荣正,国旭明,等. 陶瓷基复合材料与金属异种材料焊接技术的研究现状[J]. 热加工工艺,2023,52(15):1-5,12. ZHANG Yu,XU Rongzheng,GUO Xuming,et al. Research progress of welding technology of ceramic matrix composites and metals heterogeneous materials[J]. Hot Working Technology,2023,52(15):1-5,12. [18] 王鹏程. 低膨胀Sc2W3O12复合钎料制备及Cf/SiC与GH3536钎焊机理研究[D]. 哈尔滨:哈尔滨工业大学,2023. WANG Pengcheng. Preparation of low thermal expansion Sc2W3O12 composite brazing filler and brazing mechanism of Cf/SiC composite and GH3536[D]. Harbin:Harbin Institute of Technology,2023. [19] 王刚,雍耀维,王乾,等. 负热膨胀材料及其在激光熔覆中的应用[J]. 激光与红外,2023,53(5):677-684. WANG Gang,YONG Yaowei,WANG Qian,et al. Negative thermal expansion materials and their applications in laser cladding[J]. Laser & Infrared,2023,53(5):677-684. [20] WATANABE H,TANI J,KIDO H,et al. Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion[J]. Materials Science and Engineering:A,2008,494(1-2):291-298. [21] 刘文斌,田甜,徐家跃. 负热膨胀铁电晶体研究进展[J]. 人工晶体学报,2017,46(2):231-237. LIU Wenbin,TIAN Tian,XU Jiayue. Research progress of negative thermal expansion ferroelectric crystals[J]. Journal of Synthetic Crystals,2017,46(2):231-237. [22] 刁志聪,林伟林. 负热膨胀材料的研究现状及展望[J].中国钨业,2010,25(2):38-42. DIAO Zhicong,LIN Weilin. Situation and prospect of negative thermal expansion materials research[J]. China Tungsten Industry,2010,25(2):38-42. [23] 冯国强. 几类ABX3型杂化无机-有机框架材料的力学性质研究[D]. 武汉:华中科技大学,2016. FENG Guoqiang. Mechanical properties of hybrid ABX3 type inorganic-organic frameworks[D]. Wuhan:Huazhong University of Science & Technology,2016. [24] CHANG R. Physical chemistry for the chemical and biological sciences[M]. America:University Science Books,2000. [25] HAMMONDS K D,BOSENICK A,HEINE V,et al. Rigid unit modes in crystal structures with octahedrally coordinated atoms[J]. American Mineralogist,1998,83(5-6):476-479. [26] PRYDE A K,HAMMONDS K D,DOVE M T,et al. Origin of the negative thermal expansion in ZrW2O8and ZrV2O7[J]. Journal of Physics:Condensed Matter,1996,8(50):10973. [27] FORSTER P M,YOKOCHI A,SLEIGHT A W. Enhanced negative thermal expansion in Lu2W3O12[J]. Journal of Solid State Chemistry,1998,140(1):157. [28] CHEN J,XING X R,LIU G R,et al. Structure and negative thermal expansion in the PbtiO3-BifeO3 system[J]. Applied Physics Letters,2006,89(10):101914. [29] SLEIGHT A W. Compounds that contract on heating[J]. Inorganic Chemistry,1998,37(12):2854-2860. [30] SANSON A,ROCCA F,DALBA G,et al. Negative thermal expansion and local dynamics in Cu2O and Ag2O[J]. Physical Review B,2006,73(21):214305. [31] ARTIOLI G,DAPIAGGI M,FORNASINI P,et al. Negative thermal expansion in cuprite-type compounds:A combined synchrotron XRPD,EXAFS,and computational study of Cu2O and Ag2O[J]. Journal of Physics and Chemistry of Solids,2006,67(9-10):1918-1922. [32] ZHENG X G,KUBOZONO H,YAMADA H,et al. Giant negative thermal expansion in magnetic nanocrystals[J]. Nature Nanotechnology,2008,3(12):724-726. [33] NELSON J B,RILEY D P. The Thermal expansion of graphite from 15℃ to 800℃:Part I. Experimental[J]. Proceedings of the Physical Society,1945,57(6):477. [34] CAIRNS A B,CATAFESTA J,LEVELUT C,et al. Giant negative linear compressibility in zinc dicyanoaurate[J]. Nature Materials,2013,12(3):212-216. [35] CHEN J,FAN L L,REN Y,et al. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3perovskit[J]. Physical Review Letters,2013,110(11):115901. [36] HUANG R J,LIU Y Y,FAN W,et al. Giant negative thermal expansion in NaZn13-type La(Fe,Si,Co)13 compounds[J]. Journal of the American Chemical Society,2013,135(31):11469-11472. [37] SUN Z H,SONG X Y,XU L L. Effects of sintering temperature on microstructure,nitrogen deficiency and densification of spark plasma sintered Mn3Cu0.5Ge0.5N[J]. Ceramics International,2011,37(5):1693-1696. [38] TAN J,HUANG R J,LI W,et al. Broadened negative thermal expansion operation-temperature window in antiperovskite Mn3Zn0.6Ge0.4N prepared by spark plasma sintering[J]. Journal of Alloys and Compounds,2014,593:103-105. [39] ZHAO Y Y,HU F X,BAO L F,et al. Giant negative thermal expansion in bonded Mncoge-based compounds with Ni2In-type hexagonal structure[J]. Journal of the American Chemical Society,2015,137(5):1746-1749. [40] MARGADONNA S,PRASSIDES K,FITCH A N. Zero thermal expansion in a prussian blue analogue[J]. Journal of the American Chemical Society,2004,126(47):15390-15391. [41] LIGHTFOOT P,WOODCOCK D A,MAPLE M J,et al. The widespread occurrence of negative thermal expansion in zeolites[J]. Journal of Materials Chemistry,2001,11(1):212-216. [42] AMOS T G,YOKOCHI A,SLEIGHT A W. Phase transition and negative thermal expansion in tetragonal NbOPO4[J]. Journal of Solid State Chemistry,1998,141(1):303. [43] AMOS T G,SLEIGHT A W. Negative thermal expansion in orthorhombic NbOPO4[J]. Journal of Solid State Chemistry,2001,160(1):230-238. [44] GOODWIN A L,KEPERT C J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials[J]. Physical Review B,2005,71(14):140301. [45] ATTFIELD M P,SLEIGHT A W. Exceptional negative thermal expansion in AlPO4-17[J]. Chemistry of Materials,1998,10(7):2013-2019. [46] WILLIAMS D J,PARTIN D E,LINCOLN F J,et al. The disordered crystal structures of Zn(CN)2 and Ga(CN)3[J]. Journal of Solid State Chemistry,1997,134(1):164-169. [47] CHAPMAN K W,CHUPAS P J,KEPERT C J. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:An atomic pair distribution function analysis[J]. Journal of the American Chemical Society,2005,127(44):15630-15636. [48] CHAPMAN K W,CHUPAS P J,KEPERT C J. Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M= Mn,Fe,Co,Ni,Cu,Zn,Cd)[J]. Journal of the American Chemical Society,2006,128(21):7009-7014. [49] 宋晓艳,孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报,2011,47(11):1362-1371. SONG Xiaoyan,SUN Zhonghua. Review in antiperovskite manganese nitrides with negative thermal expansion properties[J]. Acta Metallurgica Sinica,2011,47(11):1362-1371. [50] 罗丰华,陶玉强,戴恩斌,等. 热致收缩ZrW2O8化合物及其复合材料[J]. 材料导报,2005,19(11):73-78. LUO Fenghua,TAO Yuqiang,DAI Enbin,et al. Negative thermal expansion compound and its composite materials[J]. Materials Reports,2005,19(11):73-78. [51] 王聪,王天民,沈容,等. 新型负热膨胀氧化物材料的研究[J]. 物理,2001(12):772-777. WANG Cong,WANG Tianmin,SHEN Rong,et al. A new type of negative thermal expansion oxides[J]. Physics,2001(12):772-777. [52] EVANS J S O,HU Z,JORGENSEN J D,et al. Compressibility,phase transitions,and oxygen migration in zirconium tungstate,ZrW2O8[J]. Science,1997,275(5296):61-65. [53] EVANS J S O,MARY T A,SLEIGHT A W. Negative thermal expansion in Sc2(WO)3[J]. Journal of Solid State Chemistry,1998,137(1):148-160. [54] WOODCOCK D A,LIGHTFOOT P,RITTER C. Negative thermal expansion in Y2(WO4)3[J]. Journal of Solid State Chemistry,2000,149(1):92-98. [55] EVANS J S O,MARY T A. Structural phase transitions and negative thermal expansion in Sc2(MoO4)3[J]. International Journal of Inorganic Materials,2000,2(1):143-151. [56] ARI M,MILLER K J,MARINKOVIC B A,et al. Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol-gel method using polyvinyl alcohol[J]. Journal of Sol-Gel Science and Technology,2011,58(1):121-125. [57] PRISCO L P,ROMAO C P,RIZZO F,et al. The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12[J]. Journal of Materials Science,2013,48(7):2986-2996. [58] LI Z Y,SONG W B,LIANG E J. Structures,phase transition and crystal water of Fe2-xYxMo3O12[J]. The Journal of Physical Chemistry C,2011,115(36):17806-17811. [59] 沈容,王聪,王天民. 负热膨胀氧化物材料ZrW2O8的研究现状[J]. 无机材料学报,2002(6):1089-1094. SHEN Rong,WANG Cong,WANG Tianmin. Progress in research on negative thermal expansion of ZrW2O8[J]. Journal of Inorganic Materials,2002(6):1089-1094. [60] WU M M,PENG J,CHENG Y Z,et al. Thermal expansion in solid solution Er2-xSmxW3O12[J]. Materials Science and Engineering:B,2007,137(1-3):144-148. [61] WU M M,CHENG Y Z,PENG J,et al. Synthesis of solid solution Er2-xCexW3O12 and studies of their thermal expansion behavior[J]. Materials Research Bulletin,2007,42(12):2090-2098. [62] WU M M,PENG J,CHENG Y Z,et al. Structure and thermal expansion properties of solid solution Nd2-xErxW3O12 (0.0≤x≤0.6 and 1.5≤x≤2.0)[J]. Solid State Sciences,2006,8(6):665-670. [63] XIAO X L,PENG J,WU M M,et al. The crystal structure and thermal expansion properties of solid solutions Ln2-xDyxW3O12(Ln=Er and Y)[J]. Journal of Alloys and Compounds,2008,465(1-2):556-561. [64] PENG J,WU M M,WANG H,et al. Structures and negative thermal expansion properties of solid solutions YxNd2-xW3O12(x=0.0-1.0,1.6-2.0)[J]. Journal of Alloys and Compounds,2008,453(1-2):49-54. [65] MARINKOVIC B A,JARDIM P M,DE AVILLEZ R R,et al. Negative thermal expansion in Y2Mo3O12[J]. Solid State Sciences,2005,7(11):1377-1383. [66] SUMITHRA S,TYAGI A K,UMARJI A M. Negative thermal expansion in Er2W3O12and Yb2W3O12 by high temperature X-ray diffraction[J]. Materials Science and Engineering:B,2005,116(1):14-18. [67] GATES S D,LIND C. Polymorphism in yttrium molybdate Y2Mo3O12[J]. Journal of Solid State Chemistry,2007,180(12):3510-3514. [68] TAKENAKA K,ASANO K,MISAWA M,et al. Negative thermal expansion in Ge-free antiperovskite manganese nitrides:Tin-doping effect[J]. Applied Physics Letters,2008,92(1):011927. [69] TAKENAKA K,OZAWA A,SHIBAYAMA T,et al. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN[J]. Applied Physics Letters,2011,98(2):022103. [70] WANG B S,TONG P,SUN Y P,et al. Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn3−xNix(x=0.05,0.10)[J]. Applied Physics Letters,2009,95(22):222509. [71] SUN Y,WANG C,WEN Y C,et al. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN[J]. Applied Physics Letters,2007,91(23):231913. [72] LIN J C,TONG P,ZHANG K,et al. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe[J]. Applied Physics Letters,2016,109(24):241903. [73] LIN J C,TONG P,LIN H,et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3[J]. Applied Physics Letters,2015,107(13):131902. [74] HUANG R J,LI L F,CAI F S,et al. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si[J]. Applied Physics Letters,2008,93(8):61. [75] DELLA GASPERA E,TUCKER R,STAR K,et al. Copper-based conductive composites with tailored thermal expansion[J]. ACS Applied Materials & Interfaces,2013,5(21):10966-10974. [76] PENG Z W,SUN Y Z,PENG L M. Hydrothermal synthesis of ZrW2O8 nanorods and its application in zrw2o8/cu composites with controllable thermal expansion coefficients[J]. Materials & Design,2014,54:989-994. [77] DING L,WANG C,NA Y Y,et al. Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N(A=Ni,Sn)/Cu composites[J]. Scripta Materialia,2011,65(8):687-690. [78] BALCH D K,DUNAND D C. Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations[J]. Metallurgical and Materials Transactions A,2004,35:1159-1165. [79] HOLZER H,DUNAND D C. Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites[J]. Journal of Materials Research,1999,14(3):780-789. [80] YILMAZ S,DUNAND D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol%ZrW2O8 composite[J]. Composites Science and Technology,2004,64(12):1895-1898. [81] YILMAZ S. Thermal mismatch stress development in Cu–ZrW2O8 composite investigated by synchrotron X-ray diffraction[J]. Composites Science and Technology,2002,62(14):1835-1839. [82] TRUJILLO J E,KIM J W,LAN E H,et al. Metal-matrix nanocomposites with tailored coefficients of thermal expansion for improved thermomechanical reliability[J]. Journal of Electronic Materials,2012,41(6):1020-1023. [83] YAN J,SUN Y,WANG C,et al. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature[J]. Scripta Materialia,2014,84:19-22. [84] YAN X H,MIAO J J,LIU J Q,et al. Zero thermal expansion,electrical conductivity and hardness of Mn3Zn0.5Sn0.5N/Cu composites[J]. Journal of Alloys and Compounds,2016,677:52-56. [85] XUE Z W,WANG L D,LIU Z Y,et al. Effect of interfacial state on thermal expansion behaviors of β-LiAlSiO4 particulate-reinforced Cu composites[J]. Scripta Materialia,2010,62(11):867-870. [86] MATSUMOTO A,KOBAYASHI K,NISHIO T,et al. Fabrication and thermal expansion of Al-ZrW2O8 composites by pulse current sintering process[J]. Materials Science Forum,2003,426-432:2279-2284. [87] 黄兰萍,陈康华. 近零膨胀ZrW2O8/Al6013复合材料的制备与性能[J]. 金属热处理,2006(1):20-22. HUANG Lanping,CHEN Kanghua. Preparation and properties of near-zero thermal expansion ZrW2O8/AI6013[J]. Heat Treatment of Metals,2006(1):20-22. [88] WU Y,WANG M L,CHEN Z,et al. The effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites[J]. Journal of Materials Science,2013,48(7):2928-2933. [89] WANG L D,XUE Z W,CUI Y,et al. Thermal mismatch induced disorder of beta-eucryptite and its effect on thermal expansion of beta-eucryptite/Al composites[J]. Composites Science and Technology,2012,72(13):1613-1617. [90] TAKENAKA K,HAMADA T,KASUGAI D,et al. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion[J]. Journal of Applied Physics,2012,112(8):083517. [91] ZHOU C,ZHANG Q,TAN X,et al. Fully-dense Mn3Zn0.7Ge0.3N/Al composites with zero thermal expansion behavior around room temperature[J]. Materialia,2019,6:100289. [92] ZHOU C,TANG Z Y,KONG X Q,et al. High-performance zero thermal expansion in Al metal matrix composites[J]. Acta Materialia,2024,275:120076. [93] SHI X W,LIAN H,QI R Q,et al. Preparation and properties of negative thermal expansion Zr2P2WO12 powders and Zr2P2WO12/TiNi composites[J]. Materials Science and Engineering:B,2016,203:1-6. [94] LI W W,CHEN B,XIONG H P,et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology,2019,35(9):2099-2106. [95] WANG Y L,WANG W L,HUANG J H,et al. Composite brazing of C/C composite and Ni-based superalloy using (Ag-10Ti)+TiC filler material[J]. Journal of Materials Processing Technology,2021,288:116886. [96] DAI X Y,CAO J,CHEN Z,et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler[J]. Ceramics International,2016,42(5):6319-6328. [97] SONG Y Y,LIU D,HU S P,et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic[J]. Journal of the European Ceramic Society,2019,39(4):696-704. [98] WANG P C,LIU X F,WANG H H,et al. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536[J]. Materials Characterization,2022(185):111754. [99] BA J,JI X,WANG B,et al. Root-like C/SiC surface structure fabricated by the thermal and electrochemical corrosion for brazing to Nb[J]. Composites Part B:Engineering,2021,218:108942. [100] BA J,ZHENG X H,NING R,et al. C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy[J]. Journal of the European Ceramic Society,2019,39(4):755-761. [101] WANG X Y,SI X Q,LI M S,et al. Y2W3O12@SiO2 composite particles for regulating thermal expansion and interfacial reactions in BaZr0.1Ce0.7Y0.1Yb0.1O3-δ/AISI 441 joints[J]. Composites Part B:Engineering,2022,242:110108. [102] SI X Q,CAO J,TALIC B,et al. A novel Ag based sealant for solid oxide cells with a fully tunable thermal expansion[J]. Journal of Alloys and Compounds,2020,831:154608. [103] WANG P C,LIN J H,XU Z Q,et al. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536[J]. Carbon:An International Journal Sponsored by the American Carbon Society,2023,201:765-775. [104] VARGA T,WILKINSON A P,JORGENSEN J D,et al. Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression[J]. Solid State Sciences,2006,8(3-4):289-295. [105] ZHANG L X,ZHANG B,SUN Z,et al. Brazing of ZrB2-SiC-C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlaye[J]. Ceramics International,2020,46(8):10224-10232. [106] WANG Z Y,BUTT H A,MA Q,et al. The use of a carbonized phenolic formaldehyde resin coated Ni foam as an interlayer to increase the high-temperature strength of C/C composite-Nb brazed joints[J]. Ceramics International,2022,48(6):7584-7592. [107] WANG Z Y,LI M N,BA J,et al. In-Situ synthesized TiC nano-flakes reinforced C/C composite-Nb brazed joint[J]. Journal of the European Ceramic Society,2018,38(4):1059-1068. [108] HAN A,WANG G,WANG W,et al. Microstructure evolution and mechanical properties of SiC and Nb joint brazed with AgCuTi/(Sr0.2Ba0.8)TiO3-Cu/AgCuTi composite fillers[J]. Ceramics International,2024,50(18):34005-34016. [109] QI J L,BA J,LI J H,et al. β-LiAlSiO4 reinforced Cu composite interlayer for brazing C/C composites and Nb[J]. Vacuum,2020,172:109102. |
[1] | 陈钊杰, 谢晋, 刘军汉, 熊长新, 李迪帆. 脉冲放电驱动磨料流辅助磨削单晶碳化硅研究[J]. 机械工程学报, 2024, 60(9): 383-392. |
[2] | 李力, 王一轩, 罗芬, 张文涛, 赵巍, 李小强. 钎焊时间对TiH2-65Ni+TiB2钎料钎焊连接TiAl合金接头的影响[J]. 机械工程学报, 2024, 60(8): 176-185. |
[3] | 王星星, 吴港, 何鹏, 杨晓红. 基于第一性原理的镍/碳化钨复合钎涂层界面分析[J]. 机械工程学报, 2024, 60(4): 296-304. |
[4] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
[5] | 马泳涛, 孙宁, 王俊龙, 李春凡, 卢春生, 张彬, 刘兰荣. 前混合水射流喷丸覆盖率计算及对渗碳钢表面完整性的影响研究[J]. 机械工程学报, 2024, 60(3): 393-404. |
[6] | 李淳, 陈雷, 司晓庆, 亓钧雷, 曹健. 陶瓷-金属接头残余应力调控研究综述[J]. 机械工程学报, 2024, 60(22): 21-39. |
[7] | 王颖, 木瑞洁, 牛士玉, 孙孔波, 杨振文. 高熵碳化物陶瓷及其钎焊接头的组织和力学性能[J]. 机械工程学报, 2024, 60(22): 76-85. |
[8] | 王鹏程, 李锦政, 刘维瀚, 陈海燕, 李文亚. Al0.3CoCrFeNi高熵合金与YG15硬质合金钎焊接头组织及力学性能研究[J]. 机械工程学报, 2024, 60(22): 86-93. |
[9] | 张振阳, 王景宽, 李鹏, 王银晨, 李超, 张亮亮, 董红刚. 钎料成分及钎焊温度对Ti2AlNb与GH4169合金钎焊接头组织性能的影响[J]. 机械工程学报, 2024, 60(22): 116-129. |
[10] | 申志康, 王波, 杨益, 管月辉, 周平, 侯文涛, 朴钟宇, 刘小超, 黄国强, 杨夏炜, 陈海燕, 田艳红, 李文亚, 李会军. 铝/钢搅拌摩擦钎焊连接机理及疲劳性能研究[J]. 机械工程学报, 2024, 60(22): 130-138. |
[11] | 代金垚, 刘献栋, 单颖春, 姜二. 汽车钢制车轮组合焊接的残余应力场研究[J]. 机械工程学报, 2024, 60(22): 291-301. |
[12] | 贾旭, 胡利方, 李子昊, 郑植, 刘伟, 张 鹏. 基于阳极键合玻璃与铜的钎焊连接机理研究及其力学性能分析[J]. 机械工程学报, 2024, 60(2): 140-149. |
[13] | 高德君, 武绍旺, 杨生旭, 张承浩, 周龙, 司晓庆, 李淳, 亓钧雷, 曹健. 高温时效对TA1/TC4钎焊接头组织与性能的影响研究[J]. 机械工程学报, 2024, 60(14): 109-116. |
[14] | 任国鑫, 崔泽琴, 丁正祥, 郝晓虎, 王文先, 李卫国. 殷瓦合金激光增材制造研究进展[J]. 机械工程学报, 2024, 60(11): 259-272. |
[15] | 张吉银, 姚倡锋, 谭靓, 崔敏超, 周征, 孙蕴齐, 李国喜, 樊怡. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2023, 59(6): 46-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||