[1] HAAG S, ANDERL R. Digital twin:Proof of concept[J]. Manufacturing Letters, 2018(15):64-66. [2] 陶飞, 马昕, 胡天亮, 等.数字孪生标准体系[J].计算机集成制造系统, 2019, 25(10):2405-2418. TAO Fei, MA Xin, HU Tianliang, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing System, 2019, 25(10):2405-2418. [3] RASHEED A, SAN O, KVAMSDAL T. Digital twin:Values, challenges and enablers from a modeling perspective[J]. IEEE Access, 2020(8):21980-22012. [4] TONG X, LIU Q, PI S, et al. Real-time machining data application and service based on IMT digital twin[J]. Journal of Intelligent Manufacturing, 2020, 31:1113-1132. [5] DENG C, GUO R, LIU C, et al. Data cleansing for energy-saving:A case of cyber-physical machine tools health monitoring system[J]. International Journal of Production Research, 2018, 56(1-2):1000-1015. [6] TAO F, ZHANG M. Digital twin shop-floor:A new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017(5):20418-20427. [7] 陶飞, 刘蔚然, 张萌, 等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统, 2019, 25(1):1-18. TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18. [8] LAI X, WANG S, GUO Z, et al. Designing a shape-performance integrated digital twin based on multiple models and dynamic data:A boom crane example[J]. Journal of Mechanical Design, 2021, 143(7):1-14. [9] WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3):1-12. [10] 宋学官, 来孝楠, 何西旺, 等.重大装备形性一体化数字孪生关键技术[J].机械工程学报, 2022, 58(10):298-325. SONG Xueguan, LAI Xiaonan, HE Xiwang, et al. Key technologies of shape-performance integrated digital twin for major equipment[J]. Journal of Mechanical Engineering, 2022, 58(10):298-325. [11] KAPTEYN M G, KNEZEVIC D J, HUYNH D B P, et al. Data-driven physics-based digital twins via a library of component-based reduced-order models[J]. International Journal for Numerical Methods in Engineering, 2022, 123(13):2986-3003. [12] Perez L, Rodriguez-Jimenez S, Rodriguez N, et al. Digital twin and virtual reality based methodology for multi-robot manufacturing cell commissioning[J]. Applied Sciences, 2020, 10:3633. [13] 李莎莎, 舒亮, 杨艳芳, 等.逻辑与模型数据并行计算的数字孪生车间系统快速架构方法[J].机械工程学报, 2021, 57(17):76-85. LI Shasha, SHU Liang, YANG Yanfang, et al. Digital twin workshop system rapid construction method based on parellel computing of logic and model data[J]. Journal of Mechanical Engineering, 2021, 57(17):76-85. [14] HE Y, GUO J, ZHENG X. From surveillance to digital twin:challenges and recent advances of signal processing for the industrial internet of things[J]. IEEE Signal Processing Magazine, 2018, 35(5):120-129. [15] 温广瑞, 李杨, 廖与禾, 等.基于精确信息重构的故障转子系统振动加速度信号积分方法[J].机械工程学报, 2013, 49(8):1-9. WEN Guangrui, LI Yang, LIAO Yuhe, et al. Faulty rotor system vibration acceleration signal integration method based on precise information reconstruction[J]. Journal of Mechanical Engineering, 2013, 49(8):1-9. [16] YANG J, LI J B, LIN G. A simple approach to integration of acceleration data for dynamic soil-structure interaction analysi[J]. Soil Dynamics and Earthquake Engineering, 2006(26):725-734. [17] TEZCAN J, MARIN-ARTIEDA C C. Least-square-support-vector-machine-based approach to obtain displacement from measured acceleration[J]. Advance in Engineering Software, 2018(115):357-362. [18] YANG Y, ZHAO Y, KANG D. Integration on acceleration signals by adjusting with envelopes[J]. Journal of Measurements in Engineering, 2016, 4(2):117-121. [19] SHI P A, WU L. Acceleration signal processing based on EMD adaptive filtering and frequency domain integration[J]. Applied Mechanics and Materials, 2015, (719-720):1038-1042. [20] LAMAS-LOPEZ F, CUI Y J, AGUIAR S C. Assessment of integration method for displacement determination using field accelerometer and geophone data[J]. Journal of Zhejiang University Science A, 2017(18):553-566. [21] KOPEL R, SLADKY R, LAUB P, et al. No time for drifting:Comparing performance and applicability of signal detrending algorithms for real-time fMRI[J] Neuroimage, 2019(191):421-429. [22] TANNER D, MORGAN-SHORT K, LUCK S J. How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition[J]. Psychophysiology, 2015(52):997-1009. |