[1] 张嘉恒, 胡志力.铝合金搅拌摩擦焊接头组织热稳定性[J].机械工程学报, 2022, 58(6):73-80. ZHANG Jiaheng, HU Zhili. Microstructural thermal stability of aluminum alloy friction stir welding joint[J]. Journal of Mechanical Engineering, 2022, 58(6):73-80. [2] 方远方, 张华.厚板5083铝合金搅拌摩擦焊接头沿厚度方向组织与力学性能[J].机械工程学报, 2022, 58(4):94-101. FANG Yuanfang, ZHANG Hua. Microstructure and mechanical properties for thick plate 5083 aluminum alloy friction stir welding joint along the thickness direction[J]. Journal of Mechanical Engineering, 2022, 58(4):94-101. [3] 李帅贞, 邢艳双, 刘雪松.转速对2060铝锂合金RFSSW接头成形及拉剪性能的影响[J].焊接学报, 2019, 40(10):156-160. LI Shuaizhen, XING Yanshuang, LIU Xuesong. Effect of rotational speed on forming and tensile shear properties of 2060 Al-Li RFSSW joint[J]. Transaction of the China Welding Institution, 2019, 40(10):156-160. [4] ZHANG Z, YANG X, ZHANG J, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy[J]. Materials & Design, 2011, 32(8):4461-4470. [5] LIU H, HU Y, DOU C, et al. An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy[J]. Materials Characterization, 2017, 123:9-19. [6] YANG X W, FU T, LI W Y. Friction stir spot welding:A review on joint macro-and microstructure, property, and process modelling[J]. Advances in Materials Science and Engineering, 2014, 2014:697170. [7] 冯海双, 苏海, 孙良杰, 等.搅拌摩擦点焊在火箭舱段连接装配上的应用[J].航空精密制造技术, 2015, 51(6):36-38. FENG Haishuang, SU Hai, SUN Liangjie, et al. Application of friction stir spot welding in the connection and assembly of rocket cabins[J]. Aviation Precision Manufacturing Technology, 2015, 51(6):36-38. [8] QIN H, ZHANG H, WU H. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al-Li alloy[J]. Materials Science and Engineering A, 2015, 626:322-329. [9] 甄云乾, 刘小超, 申志康, 等.搅拌摩擦焊材料流动的试验表征研究现状[J].机械工程学报, 2020, 56(6):184-192. ZHEN Yunqian, LIU Xiaochao, SHEN Zhikang, et al. State-of-art of experimental characterization of material flow in friction stir welding[J]. Journal of Mechanical Engineering, 2020, 56(6):184-192. [10] BAKAVOS D, CHEN Y, BABOUT L, et al. Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet[J]. Metallurgical and Materials Transactions A, 2011, 42(5):1266-1282. [11] 丁旺震, 张勇, 芦甜, 等.无针搅拌摩擦点焊材料流动行为及其与接头宏观形貌、晶粒特征的相关性[J]. 机械工程学报, 2020, 56(20):59-65. DING Wangzhen, ZHANG Yong, LU Tian, et al. Materials flow behavior during probeless friction stir spot welding and its correlation with macroscopic morphology and grain characteristics of joints[J]. Journal of Mechanical Engineering, 2020, 56(20):59-65. [12] CHU Q, YANG X W, LI W Y, et al. Numerical analysis of material flow in the probeless friction stir spot welding based on coupled eulerian-lagrangian approach[J]. Journal of Manufacturing Processes, 2018, 36:181-187. [13] CHEN G Q, LI H, WANG G Q, et al. Effects of pin thread on the in-process material flow behavior during friction stir welding:A computational fluid dynamics study[J]. International Journal of Machine Tools and Manufacture, 2018, 124:12-21. [14] KUMAR R, PANCHOLI V, BHARTI R P. Material flow visualization and determination of strain rate during friction stir welding[J]. Journal of Materials Processing Technology, 2017, 255:470-476. [15] LI W Y, CHU Q, YANG X W, et al. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 252:69-80. [16] CHU Q, HAO S J, LI W Y, et al. Impact of shoulder morphology on macrostructural forming and the texture development during probeless friction stir spot welding[J]. Journal of Materials Research and Technology, 2021, 12:2042-2054. [17] 邹阳帆, 王非凡, 李文亚, 等.不等厚2219铝合金板回填式搅拌摩擦点焊接头组织及性能研究[J].机械工程学报, 2020, 56(6):176-183. ZOU Yangfan, WANG Feifan, LI Wenya, et al. Study on microstructure and properties of refill friction stir spot welding joints of 2219 aluminum alloy with different thickness[J]. Journal of Mechanical Engineering, 2020, 56(6):176-183. [18] FONDA R W, KNIPLING K E. Texture development in friction stir welds[J]. Science and Technology of Welding and Joining, 2011, 16(4):288-294. [19] CAO J Y, WANG M, KONG L, et al. Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy[J]. Materials Characterization, 2017, 128:54-62. [20] LIU X C, ZHEN Y Q, SUN Y F, et al. Local inhomogeneity of mechanical properties in stir zone of friction stir welded AA1050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9):2369-2380. [21] 黄国强. FSP制备不同性质颗粒增强铝基复合材料组织控制和性能研究[D].南京:南京航空航天大学, 2020. HUANG Guoqiang. Study on microstructure control and properties of particle reinforced aluminum matrix composites prepared by FSP[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020. [22] ZHENG R, Hao X, Yuan Y, et al. Effect of high volume fraction of B4C particles on the microstructure and mechanical properties of aluminum alloy based composites[J]. Journal of Alloys and Compounds, 2013, 576:291-298. [23] HANSEN N. Boundary strengthening over five length scales[J]. Advanced Engineering Materials, 2005, 7(9):815-821. [24] GAO C, ZHU Z, HAN J, et al. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al-Li alloy[J]. Materials Science and Engineering A, 2015, 639:489-499. [25] NIE J F, MUDDLE B C, POLMEAR I J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys[J]. Materials Science Forum, 1996, 217:1257-1262. [26] ZHU Z X, HAN J, GAO C, et al. Microstructures and mechanical properties of Al-Li 2198-T8 alloys processed by two different severe plastic deformation methods:A comparative study[J]. Materials Science and Engineering A, 2017, 681:65-73. [27] HUSKINS E L, CAO B, RAMESH K T. Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering A, 2010, 527(6):1292-1298. |