• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (15): 134-148.doi: 10.3901/JME.2024.15.134

• 机械动力学 • 上一篇    下一篇

扫码分享

基于D-H参数与拉格朗日联立方程的仿生水蛇机器人运动学分析及动力学建模

王敏1,2, 孙景健1, 丁基恒1,2, 孙翊1,2, 彭艳1,2,3, 蒲华燕1,2,4, 罗均1,2,4, 谢少荣2,5   

  1. 1. 上海大学机电工程与自动化学院 上海 200444;
    2. 海洋智能无人系统装备教育部工程技术研究中心 上海 200444;
    3. 上海大学人工智能研究院 上海 200444;
    4. 重庆大学机械与运载工程学院 重庆 400044;
    5. 上海大学计算机工程与科学学院 上海 200444
  • 收稿日期:2023-09-23 修回日期:2024-03-07 出版日期:2024-08-05 发布日期:2024-09-24
  • 作者简介:王敏,男,1988年出生,博士,副研究员,博士研究生导师。主要研究方向为机械系统动力学建模与分析、振动噪声主被动控制、机器人运动分析与建模控制。E-mail:xmwangmin@shu.edu.cn
    蒲华燕(通信作者),女,1982年出生,博士,研究员,博士研究生导师。主要研究方向为振动噪声分析与控制、机器人运动控制。E-mail:phygood_2001@shu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1313000)和国家自然科学基金(62273220)资助项目。

Kinematics Analysis and Dynamics Modeling of Bionic Water Snake Robot Based on D-H Parameters and Lagrange Equations

WANG Min1,2, SUN Jingjian1, DING Jiheng1,2, SUN Yi1,2, PENG Yan1,2,3, PU Huayan1,2,4, LUO Jun1,2,4, XIE Shaorong2,5   

  1. 1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444;
    2. Marine Intelligent Unmanned System Equipment Engineering Technology Research Center of the Ministry of Education, Shanghai 200444;
    3. Institute of Artificial Intelligence, Shanghai University, Shanghai 200444;
    4. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    5. School of Computer Engineering and Science, Shanghai University, Shanghai 200444
  • Received:2023-09-23 Revised:2024-03-07 Online:2024-08-05 Published:2024-09-24

摘要: 随着水下环境作业需求不断增大,对机器人在极端环境作业、多任务需求等方面提出了更高的要求。为了解决对水下机器人的环境适应性、机动性等高性能需求,亟需设计一种高灵活性的水下蛇形机器人,并对其结构优化及数学建模进行深入研究。因此,基于对生物蛇的仿生机理分析,设计出了一种模块化、可重构多节仿生水蛇机器人结构模型;基于D-H参数法对空间运动波形上各关节运动轨迹、前进速度进行分析,建立运动映射关系;考虑水下运动产生的水阻力和反作用力,建立水动力学模型,结合拉格朗日方程,联合建立了水蛇机器人的等效运动学及动力学模型。基于建立的联合模型,对影响水蛇机器人关节角运动、前进速度等性能的关键参数进行了详细分析。采用蜿蜒步态作为输入参考信号,利用Matlab与ADAMS进行联合仿真验证,结果表明当步态幅值α取0.8 rad、角频率ω取2 rad/s、相邻关节相位差δ取π/3 rad时,机器人呈现一种理想蜿蜒运动步态;同时,利用ADAMS分析了机器人各关节的驱动力矩和功率,结果表明机器人两端关节到中间关节驱动力矩和功率分别从约0.6 N/m增加到14.3 N/m及1.1 N·m/s增加到14.8 N·m/s;最后,搭建了机器人样机实验,对水蛇机器人蜿蜒运动驱动函数及驱动力矩等进行实验验证,实验结果表明水蛇机器人中间关节所需驱动力矩和功率相较两端关节更大,中间关节驱动力矩为两端关节驱动力矩的3.2倍,与仿真结论一致,为水蛇机器人的水下运动提供了理论依据。

关键词: 水蛇机器人, 仿生机理, 蜿蜒运动, 运动学模型, 动力学建模

Abstract: With the increasing demand for underwater environment operations, higher requirements have been put forward for robots in extreme environmental operations, multitasking requirements, and other aspects. In order to meet the high-performance requirements of environmental adaptability and maneuverability for underwater robots, it is urgent to design a highly flexible underwater snake like robot, and conduct in-depth research on its structural optimization and mathematical modeling. Therefore, based on the analysis of the biomimetic mechanism of biological snakes, a modular and reconfigurable multi segment biomimetic water snake robot structural model is designed. Based on the D-H parameter method, analyze the motion trajectories and forward speeds of each joint on the spatial motion waveform, and establish a motion mapping relationship; The hydrodynamic model is established considering the water resistance and reaction forces generated by underwater motion, and combined with the Lagrange equation, The equivalent kinematics and dynamics models of the water snake robot are established. Based on the established joint model, a detailed analysis is conducted on the key parameters that affect the joint angular motion, forward speed, and other performance of the water snake robot. Using a sinuous gait as the input reference signal, a joint simulation verification is conducted using Matlab and Adams. The results showed that when the gait amplitude is taken as 0.8 rad, the angular frequency is taken as 2 rad/s, and the phase difference between adjacent joints is taken as π/3 rad, the robot presented an ideal sinuous gait; At the same time, Adams is used to analyze the driving torque and power of each joint of the robot. The results show that the driving torque and power from the two end joints to the middle joint of the robot increased from about 0.6 N/m to 14.3 N/m, and from 1.1 N•m/s to 14.8 N•m/s, respectively; Finally, a robot prototype experiment is built to verify the driving function and torque of the snake robot's winding motion. The experimental results show that the driving torque and power required by the middle joint of the snake robot were greater than those of the two end joints, and the driving torque of the middle joint was 3.2 times that of the two end joints. This is consistent with the simulation conclusion and provides a theoretical basis for the underwater motion of the snake robot.

Key words: water snake robot, biomimetic mechanism, meandering movement, kinematic model, dynamic modeling

中图分类号: