[1] YOSHIMURA M. Making use of CAD technology based on the dynamic characteristics data of joints to improve the structural rigidity of machine tools[J]. Machine Tools, 1979, 1(1):142-146. [2] XU P, ZHOU Z, LIU T, et al. The investigation of viscoelastic mechanical behaviors of bolted GLARE joints:Modeling and experiments[J]. International Journal of Mechanical Sciences, 2020, 175:105538. [3] LI C, QIAO R, TANG Q, et al. Investigation on the vibration and interface state of a thin-walled cylindrical shell with bolted joints considering its bilinear stiffness[J]. Applied Acoustics, 2021, 172:107580. [4] 蔡力钢, 郝宇, 郭铁能, 等. 螺栓结合面法向静态刚度特性提取方法研究[J]. 振动与冲击, 2014, 33(16):18-23. CAI Ligang, HAO Yu, GUO Tieneng, et al. Method of extracting normal static stiffness of bolted joint interfaces[J], Journal of vibration and shock, 2014, 33(16):18-23. [5] 刘晓峰, 孙伟, 方自文. 基于非均匀分布复弹簧单元的螺栓连接薄板结构动力学有限元建模[J]. 振动与冲击, 2021, 40(13):111-119. LIU Xifeng, SUN Wei, FANG Ziwen. Finite element dynamic modeling for bolted thin plate structure based on complex spring element with non-uniform distribution[J], Journal of vibration and shock, 2021, 40(13):111-119. [6] 李院生, 张广鹏, 解芳芳, 等. 一种螺栓结合部刚度四点等效方法[J]. 机械强度, 2017, 39(3):642-646. LI Yuansheng, ZHANG Guangpeng, XIE Fangfang, et al. A four-point equivalent method of the bolted joints stiffness[J], Journal of Mechanical Strength, 2017, 39(3):642-646. [7] EHRLICH C, SCHMIDT A, GAUL L. Reduced thin-layer elements for modeling the nonlinear transfer behavior of bolted joints of automotive engine structures[J]. Archive of Applied Mechanics, 2016, 86(1):59-64. [8] XIAO W, MAO K, ZHU M, et al. Modelling the spindle-holder taper joint in machine tools:A tapered zero-thickness finite element method[J]. Journal of Sound and Vibration, 2014, 333(22):5836-5850. [9] MAO K, LI B, WU J, et al. Stiffness influential factors-based dynamic modeling and its parameter identification method of fixed joints in machine tools[J]. International Journal of Machine Tools and Manufacture, 2010, 50(2):156-164. [10] 毛宽民, 黄小磊, 李斌, 等. 一种机床固定结合部的动力学参数化建模方法[J]. 华中科技大学学报, 2012, 40(4):49-53. MAO Kuanmin, HUANG Xiaolei, LI Bin, et al. Dynamic and parameterized modeling of fixed joints in machine tools using surface respose method[J]. Journal of Huzhong University of Science and Technology, 2012, 40(4):49-53. [11] 毛宽民, 李斌, 雷声. 机床结合部动力学建模及应用[M]. 武汉:武汉理工大学出版社, 2018. MAO Kuanmin, LI Bin, LEI Sheng. Modeling and application of joints on machine tools[M]. Wuhan:Wuhan University of Technology, 2018. [12] 李玲, 蔡安江, 蔡力钢, 等. 螺栓结合面微观接触模型[J]. 机械工程学报, 2016, 52(7):205-212. LI Ling, CAI Anjiang, CAI Ligang, et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering, 2016, 52(7):205-212. [13] LI L, WANG J, PEI X, et al. A modified elastic contact stiffness model considering the deformation of bulk substrate[J]. Journal of Mechanical Science and Technology, 2020, 34(2):777-790. [14] 李玲, 云强强, 王晶晶, 等. 具有连续光滑特性的结合面接触刚度模型[J]. 机械工程学报, 2021, 57(7):117-124. LI Ling, YUN Qiangqiang, WANG Jingjing, et al. A continuous and smooth contact stiffness model for mechanical joint surfaces[J]. Journal of Mechanical Engineering, 2021, 57(7):117-124. [15] 惠烨, 黄玉美, 李艳. 切向载荷下螺栓结合部静特性分析及试验[J]. 中国机械工程, 2015, 26(7):892-898. HUI Ye, HUANG Yumei, LI Yan. Theoretical analysis and test on static characteristics of bolt joints under tangential load[J]. China Mechanical Engineering, 2015, 26(7):892-898. [16] 惠烨, 黄玉美, 李鹏阳, 等. 预紧载荷下螺栓结合部静特性分析[J]. 中国机械工程, 2019, 30(10):1149-1155. HUI Ye, HUANG Yumei, LI Pengyang, et al. Static characteristic analysis of bolt joints under preloads[J]. China Mechanical Engineering, 2019, 30(10):1149-1155. [17] TIAN H, LI B, LIU H, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3):239-249. [18] YE H, HUANG Y, LI P, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces[J]. Tribology International, 2016, 95:109-117. [19] ZHAO Y, YANG C, CAI L, et al. Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool[J]. Precision Engineering, 2016, 43:230-240. [20] 田红亮, 钟先友, 秦红玲, 等. 依据各向异性分形几何理论的固定结合部法向接触力学模型[J]. 机械工程学报, 2013, 49(21):108-122. TIAN Hongliang, ZHONG Xianyou, QIN Hongling, et al. Normal contact mechanicsmodel of fixed joint interface adopting anisotropic fractal geometerical theory[J]. Journal of Mechanical Engineering, 2013, 49(21):108-122. [21] 张学良, 范世荣, 温淑花, 等. 基于等效横观各向同性虚拟材料的固定结合部建模方法[J]. 机械工程学报, 2017, 53(15):141-147. ZHANG Xueliang, FAN Shirong, WEN Shuhua, et al. Modeling method of fixed joint interfaces based on equivalent transversely isotropic virtual material[J], Journal of Mechanical Engineering, 2017, 53(15):141-147. [22] LIU H, SUN Y, LIU Z. Simulation and experiment of dynamic properties of joint surfaces based on fractal theory[J]. Shock and Vibration, 2015(2):48-56. [23] ZHAO Y, XU J, CAI L, et al. Stiffness and damping model of bolted joint based on the modified three-dimensional fractal topography[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 231(2):279-293. [24] 田红亮, 方子帆, 赵春华, 等. 依据修正GW理论的结合部法向接触研究[J]. 华中科技大学学报, 2014, 42(6):38-42+47. TIAN Hongliang, FANG Zifan, ZHAO Chunhua, et al. Normal contact of joint interface using revised GW theory[J]. Journal of Huzhong University of Science and Technology, 2014, 42(6):38-42+47. [25] PAN W, LI H, QU H, et al. Investigation of tangential contact damping of rough surfaces from the perspective of viscous damping mechanism[J]. Journal of Tribology, 2021, 143(4):041501. [26] 陈永会, 张学良, 温淑花, 等. 考虑弹塑性阶段的结合面法向接触阻尼分形模型[J]. 机械工程学报, 2019, 55(16):58-68. CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Fractal model for normal contact damping of joint surface considering elastoplastic phase[J]. Journal of Mechanical Engineering, 2019, 55(16):58-68. [27] 王颜辉, 张学良, 温淑花, 等. 机械结合面法向接触刚度分形理论模型[J]. 机械强度, 2020, 42(3):648-653. WANG Yanhui, ZHANG Xueliang, WEN Shuhua, et al. Fractal theoretical theo retical model of normal contact stiffness of mechanical joint interface[J]. Journal of Mechanical Strength, 2020, 42(3):648-653. [28] 杨红平, 傅卫平, 王雯, 等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型[J]. 机械工程学报, 2013, 49(1):102-107. YANG Hongping, FU Weiping, WANG Wen, et al. Calculation model of the normal contact stiffness of joints based on the fractal geometry and contact theory[J]. Journal of Mechanical Engineering, 2013, 49(1):102-107. [29] 石坤, 张广鹏, 魏锋涛, 等. 机械结合部动态特性的等效参数研究[J]. 机械工程学报, 2018, 54(19):144-149. SHI Kun, ZHANG Guangpeng, WEI Fengtao, et al. Equivalent characteristic parameters of mechanical joints[J]. Journal of Mechanical Engineering, 2018, 54(19):144-149. [30] 马辉, 于明月, 高昂, 等. 基于非线性虚拟材料栓接结合部动力学建模方法[J]. 东北大学学报, 2021, 42(28):1111-1119. MA Hui, YU Mingyue, GAO Ang, et al. Dynamic modeling method of bolted joint interfaces based on nonlinear transversely isotropic virtual material[J]. Journal of Northeastern University, 2021, 42(28):1111-1119. [31] 刘晓峰, 孙伟, 孙悦. 基于虚拟材料复模量非均匀分布的螺栓连接薄板结构半解析建模[J]. 工程科学学报, 2021, 43(6):843-851. LIU Xiaofeng, SUN Wei, SUN Yue. Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material[J]. Chinese Journal of Engineering, 2021, 43(6):843-851. [32] PEETERS B, VAN DER AUWERAER H, GUILLAUME P, et al. The PolyMAX frequency-domain method:A new standard for modal parameter estimation[J]. Shock and Vibration, 2004, 11:523692. [33] 孙鑫晖, 郝木明, 王淮维. PolyMAX模态参数识别算法的快速实现[J]. 振动与冲击, 2011, 30(10):6-8. SUN Xinhui, HAO Muming, WANG Huaiwei. Fast implementation for PolyMAX modal identification algorithm[J]. Journal of vibration and shock, 2011, 30(10):6-8+18 [34] YE B, XIAO W, MAO K, et al. Hybrid analytic-experimental modeling for machine tool structural dynamics[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5):1679-1691. |