• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (1): 198-209.doi: 10.3901/JME.2024.01.198

• 特邀专栏:高性能制造专栏 • 上一篇    下一篇

扫码分享

激光巨量转移复合型运动平台用洛伦兹磁轴承

刘强1,2, 高晴利1, 王伟1, 韩邦成3, 牛萍娟2, 王子羲4   

  1. 1. 北京石油化工学院精密电磁装备与先进测量技术研究所 北京 102617;
    2. 天津工业大学膜国家重点实验室 天津 300387;
    3. 北京航空航天大学仪器科学与光电工程学院 北京 100191;
    4. 清华大学摩擦学国家重点实验室 北京 100084
  • 收稿日期:2023-03-01 修回日期:2023-08-10 发布日期:2024-03-15
  • 作者简介:刘强,男,1983年出生,博士,教授,硕士研究生导师。主要研究方向为磁悬浮轴承技术与Mini/Micro LED巨量转移技术。E-mail:liuqiang@bipt.edu.cn
    王伟(通信作者),女,1968年出生,硕士,副教授,硕士研究生导师。主要研究方向为测量与控制技术和磁悬浮支撑技术。Email:shaowang66@163.com
  • 基金资助:
    北京市自然科学基金(3212004)、北京市属高等学校高水平科研创新团队建设支持计划(BPHR20220110)、北京市属高校分类发展专项(11000023T000002199202)和北京石油化工学院重要科研成果培育专项(BIPTACF-007)资助项目。

Lorentz Magnetic Bearings for Laser Massive Transfer Composite Motion Platforms

LIU Qiang1,2, GAO Qingli1, WANG Wei1, HAN Bangcheng3, NIU Pingjuan2, WANG Zixi4   

  1. 1. Institute of Precision Electromagnetic Equipment and Advanced Measurement Technology, Beijing Institute of Petrochemical Technology, Beijing 102617;
    2. State Key Laboratory of Membrane, Tianjin Polytechnic University, Tianjin 300387;
    3. School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191;
    4. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084
  • Received:2023-03-01 Revised:2023-08-10 Published:2024-03-15

摘要: 针对现有Mini/Micro LED巨量转移运动定位平台不具有轴向微高度调整能力的问题,提出了一种基于轴向平动单自由度洛伦兹磁轴承的复合构型运动定位平台(Motion positioning platform,MPP)。为提高平台轴向悬浮控制带宽与控制精度,设计了“L”型永磁体和倾斜磁化永磁体叠加的多通道磁轴承拓扑构型,利用等效表面电流法建立了气隙区域磁通密度数学模型,得到了影响磁通密度大小和均匀性的结构参数,借助灵敏度分析筛选设计参数并进行优化设计。优化后轴承气隙磁密强度为478.20 mT,气隙磁密轴向波动率为10.6%,分别比原始方案的323.07 mT和10.8%提升48.02%和1.8%。根据优化结果研制了一台基于洛伦兹磁轴承的复合支撑运动平台,并应用于巨量转移设备,进行磁密测量验证和芯片转移效果测试。结果表明,优化方案轴承气隙平均磁密强度为476.75 mT,气隙磁密轴向波动率为11.1%,与设计结果相符。转移中使用轴向轴承主动承接芯片,可消除因芯片未完全剥落产生的转移坏点,对提升巨量转移效率和良率有重要意义。

关键词: 巨量转移, Mini/Micro LED, 运动定位平台, 洛伦兹磁轴承, 优化设计

Abstract: Aiming at the problem that the existing massive transfer motion positioning platform does not have the ability of adjusting within a small axial distance, a composite configuration motion positioning platform (MPP) based on axially translational single-degree-of-freedom Lorentz force magnetic bearings is proposed. In order to improve the bandwidth and accuracy of the platform's axial suspension control, a multi-channel magnetic bearing consisting of an L-shaped permanent magnet and an tilted magnetized permanent magnets is designed. A mathematical model of the magnetic flux density in the air gap region is established through the equivalent surface current method, and the structural parameters affecting the magnitude and uniformity of the magnetic flux density are obtained. The structural parameters are screened by sensitivity analysis and optimized. After optimization, the air gap magnetic density intensity of the bearing is 478.20 mT, and the axial fluctuation rate of the air gap magnetic density is 10.6%, which is 48.02% and 1.8% higher than the 323.07 mT and 10.8% of the original scheme, respectively. Based on the optimization result, a massive transfer device and a Lorentz force magnetic bearing are developed, and magnetic density measurement verification and chip transfer effect testing are conducted. The results show that the optimized scheme has an average magnetic density intensity of 476.75 mT in the bearing air gap, an axial fluctuation rate of 11.1% in the air gap magnetic density, and a current stiffness of 88.6 N/A, which is consistent with the design results. The use of bearing axial active take up of chips in transfer can reduce transfer bad spots generated by chips not completely off, which is of great significance for improving the efficiency and yield of massive transfer.

Key words: massive transfer, Mini/Micro LED, motion positioning platform, Lorentz magnetic bearings, optimized design

中图分类号: