[1] 张志强,宋文兴,陆海鹰. 热障涂层在航空发动机涡轮叶片上的应用研究[J]. 航空发动机,2011,37(2):38-42. ZHANG Zhiqiang,SONG Wenxing,LU Haiying. Application of thermal barrier coating on aeroengine turbine blade[J]. Aeroeigne,2011,37(2):38-42. [2] NIKOLA S,DRAGAN M,BRANKO K,et al. Cartesian compliance identification and analysis of an articulated machining robot[J]. FME Transactions,2013,41(2):83-95. [3] LEALI F,VERGNANO A,PINI F,et al. A workcell calibration method for enhancing accuracy in robot machining of aerospace parts[J]. The International Journal of Advanced Manufacturing Technology,2016,85(1-4):47-55. [4] 温贻芳,孙立宁,徐朋. 等离子喷涂机器人基于Adaboost算法的操作性能研究[J]. 制造技术与机床,2018(7):124-129. WEN Yifang,SUN Lining,XU Peng,et al. Research on operation performance of plasma spraying robot based on Adaboost algorithm[J]. Manufacturing Technology & Machine Tool,2018(7):124-129. [5] GLEESON D,JAKOBSSON S,SALMAN R,et al. Generating optimized trajectories for robotic spray painting[J]. IEEE Transactions on Automation Science and Engineering,2022,19(3):1380-1391. [6] SHENG W,CHEN H,NING X,et al. Tool path planning for compound surfaces in spray forming processes[J]. IEEE Transactions on Automation Science & Engineering,2005,2(3):240-249. [7] BO Z,XI Z,MENG Z,et al. Off-line programming system of industrial robot for spraying manufacturing optimization[C]//Proceedings of the 33rd Chinese Control Conference. IEEE,2014. [8] 孙明,韩光超,张海鸥. 机器人等离子喷涂轨迹间距优化及实验研究[J]. 北京工商大学学报,2007(4):15-17. SUN Ming,HAN Guangchao,ZHANG Haiou. Optimization and experimental study on trajectory spacing of robot plasma spraying[J]. Journal of Beijing Technology and Business University,2007(4):15-17. [9] CHEN W,LI X,GE H,et al. Trajectory planning for spray painting robot based on point cloud slicing technique[J]. Electronics,2020,9(6):908. [10] BOLOT R,DENG S,CAI Z,et al. A coupled model between robot trajectories and thermal history of the workpiece during thermal spray operation[J]. Journal of Thermal Spray Technology,2014,23(3):296-303. [11] CAI Z,QI B,TAO C,et al. A robot trajectory optimization approach for thermal barrier coatings used for free-form components[J]. Journal of Thermal Spray Technology,2017,26:1651-1658. [12] REN J,SUN Y,HUI J,et al. Coating thickness optimization for a robotized thermal spray system[J]. Robotics and Computer-Integrated Manufacturing,2023,83:102569. [13] LIANG F,KANG C,FANG F. A review on tool orientation planning in multi-axis machining[J]. International Journal of Production Research,2021,59(18):5690-5720. [14] 黄智,魏鹏轩,万从保,等. 整体叶盘磨抛加工碰撞检测方法[J]. 计算机集成制造系统,2020,26(12):3350-3358. HUANG Zhi,WEI Pengxuan,WAN Congbao,et al. Collision detection method of blisk grinding and polishing[J]. Computer Integrated Manufacturing Systems,2020,26(12):3350-3358. [15] WANG J,LUO M,ZHANG D. A GPU-accelerated approach for collision detection and tool posture modification in multi-axis machining[J]. IEEE Access,2018,6:35132-35142. [16] 万伟伟,沈婕,高峰,等. 喷涂角度对HVOF喷涂WC-10Co-4Cr涂层性能的影响[J]. 热喷涂技术,2011,3(1):48-51. WAN Weiwei,SHEN Jie,GAO Feng,et al. Influence of spraying angle on properties of HVOF sprayed WC-10Co-4Cr coating[J]. Thermal Spray Technology,2011,3(1):48-51. [17] LIN R S,KOREN Y. Efficient tool-path planning for machining free-form surfaces[J]. 1996(1):20-28. [18] AKENINE T. Acm siggraph 2005 courses[M]. New York:ACM,2005. [19] DAM E B,KOCH M,LILLHOLM M. Quaternions,interpolation and animation[M]. Copenhagen,Denmark:Datalogisk Institut,Københavns Universitet,1998. |