[1] ZHU K,FUH J Y H,LIN X. Metal-based additive manufacturing condition monitoring:A Review on machine learning based approaches[J]. IEEE/ASME Transactions on Mechatronics,2021:1-16. [2] 张家莲,李发亮,张海军. 选区激光熔化技术制备金属材料研究进展[J]. 激光与光电子学进展,2019,56(10):35-44. ZHANG Jialian,LI Faliang,ZHANG Haijun. Research progress on preparation of metallic materials by selective laser melting[J]. Laser & Optoelectronics Progress,2019,56(10):35-44. [3] Fé-PERDOMO I L,RAMOS-GREZ J A,BERUVIDES G,et al. Selective laser melting:Lessons from medical devices industry and other applications[J]. Rapid Prototyping Journal,2021,27(10):1801-1830. [4] 杨永强,宋长辉,王迪. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报,2014,50(21):140-151. YANG Yongqiang,SONG Changhui,WANG Di. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering,2014,50(21):140-151. [5] ZHANG J,SONG B,WEI Q,et al. A review of selective laser melting of aluminum alloys:Processing,microstructure,property and developing trends[J]. Journal of Materials Science & Technology,2019,35(2):270-84. [6] 杨益,党明珠,李伟,等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报,2020,56(3):181-188. YANG Yi,DANG Mingzhu,LI Wei,et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering,2020,56(3):181-188. [7] LIN X,ZHU K,FUH J Y H,et al. Metal-based additive manufacturing condition monitoring methods:From measurement to control[J]. ISA Transactions,2021,120:147-166. [8] 曲睿智,黄良沛,肖冬明. 选择性激光熔化过程中熔池演变与金属飞溅特性数值模拟[J]. 航空学报,2022,43(4):405-424. QU Ruizhi,HUANG Liangpei,XIAO Dongming. Numerical simulation of melt pool evolution and metal spattering characterization during selective laser melting processing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):405-424. [9] 朱锟鹏,王齐胜,林昕,等. 基于熔池运动特征的选区激光熔融过程状态检测方法[J]. 计算机集成制造系统,2021,27(12):3403-3415. ZHU Kunpeng,WANG Qisheng,LIN Xin,et al. Selective laser melting process state monitoring method based on motion feature of melt pool[J]. Computer Integrated Manufacturing Systems,2021,27(12):3403-3415. [10] 唐梓珏,刘伟嵬,颜昭睿,等. 基于熔池动态特征的金属激光熔化沉积形状精度演化行为研究[J]. 机械工程学报,2019,55(15):39-47. TANG Zijue,LIU Weiwei,YAN Zhaorui,et al. Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition[J]. Journal of Mechanical Engineering,2019,55(15):39-47. [11] LI R,LIU J,SHI Y,et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology,2012,59(9):1025-1035. [12] SAMES W J,LIST F A,PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews,2016,61(5):315-360. [13] CUNNINGHAM R,ZHAO C,PARAB N,et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science,2019,363(6429):849-852. [14] TAHERI ANDANI M,DEHGHANI R,KARAMOOZ-RAVARI M R,et al. Spatter formation in selective laser melting process using multi-laser technology[J]. Materials & Design,2017,131:460-469. [15] LIU Y,YANG Y,MAI S,et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design,2015,87:797-806. [16] GUNENTHIRAM V,PEYRE P,SCHNEIDER M,et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications,2017,29(2):022303. [17] MATTHEWS M J,GUSS G,KHAIRALLAH S A,et al. Denudation of metal powder layers in laser powder bed fusion processes[J]. Acta Materialia,2016,114:33-42. [18] GRASSO M,DEMIR A G,PREVITALI B,et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing,2018,49:229-239. [19] ZHANG Y,FUH J Y H,YE D,et al. In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches[J]. Additive Manufacturing,2019,25:263-274. [20] REPOSSINI G,LAGUZZA V,GRASSO M,et al. On the use of spatter signature for in-situ monitoring of laser powder bed fusion[J]. Additive Manufacturing,2017,16:35-48. [21] 王奉涛,杨守华,吕秉华,等. 金属增材制造过程熔池动态监测研究综述[J/OL]. 计算机集成制造系统:1-23[2022-04-30]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211102.1345.004.html. WANG Fengtao,YANG Shouhua,LÜ Binghua,et al. Review of research on dynamic monitoring of metal additive manufacturing process[J/OL]. Computer Integrated Manufacturing Systems:1-23[2022-04-30]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211102.1345.004.html. [22] 曹龙超,周奇,韩远飞,等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报,2021,42(10):199-233. [23] CAO Longchao,ZHOU Qi,HAN Yuanfei,et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):199-233. [24] TAHERI ANDANI M,DEHGHANI R,KARAMOOZ-RAVARI M R,et al. A study on the effect of energy input on spatter particles creation during selective laser melting process[J]. Additive Manufacturing,2018,20:33-43. [25] 赵林君,张国庆,张大林,等. 基于最大熵阈值分割算法的激光选区熔化过程溅射特征研究[J/OL]. 激光与光电子学进展:1-12[2022-04-30]. http://kns.cnki.net/kcms/detail/31.1690.TN.20211116.1007.004.html. ZHAO Linjun,ZHANG Guoqing,ZHANG Dalin,et al. Investigation of spatter characteristics in SLM using the maximum entropy threshold segmentation algorithm[J/OL]. Laser & Optoelectronics Progress:1-12[2022-04-30]. http://kns.cnki.net/kcms/detail/31.1690.TN.20211116.1007.004.html. [26] YANG D,LI H,LIU S,et al. In situ capture of spatter signature of SLM process using maximum entropy double threshold image processing method based on genetic algorithm[J]. Optics & Laser Technology,2020,131:106371. [27] WANG D,DOU W,OU Y,et al. Characteristics of droplet spatter behavior and process-correlated mapping model in laser powder bed fusion[J]. Journal of Materials Research and Technology,2021,12:1051-1064. [28] KWON O,KIM H G,HAM M J,et al. A deep neural network for classification of melt-pool images in metal additive manufacturing[J]. Journal of Intelligent Manufacturing,2020,31(2):375-386. [29] YE D,FUH J Y H,ZHANG Y,et al. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks[J]. ISA Transactions,2018,81:96-104. [30] ZHANG Y,HONG G S,YE D,et al. Extraction and evaluation of melt pool,plume and spatter information for powder-bed fusion AM process monitoring[J]. Materials & Design,2018,156:458-469. [31] ZHANG Y,SOON H G,YE D,et al. Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks[J]. IEEE Transactions on Industrial Informatics,2020,16(9):5769-5779. [32] TAN Z,FANG Q,LI H,et al. Neural network based image segmentation for spatter extraction during laser-based powder bed fusion processing[J]. Optics & Laser Technology,2020,130:106347. [33] FANG Q,TAN Z,LI H,et al. In-situ capture of melt pool signature in selective laser melting using u-net-based convolutional neural network[J]. Journal of Manufacturing Processes, 2021,68:347-355. [34] SCIME L,SIDDEL D,BAIRD S,et al. Layer-wise anomaly detection and classification for powder bed additive manufacturing processes:A machine-agnostic algorithm for real-time pixel-wise semantic segmentation[J]. Additive Manufacturing,2020,36:101453. [35] MI J,ZHANG Y,LI H,et al. In-situ monitoring laser based directed energy deposition process with deep convolutional neural network[J]. Journal of Intelligent Manufacturing,2021:1-11. [36] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision,Springer,Cham,2016:21-37. [37] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [38] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [39] 许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用,2021,57(8):10-25. XU Degang,WANG Lu,LI Fan. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications,2021,57(8):10-25. [40] CHEN Q,WANG Y,YANG T,et al. You only look one-level feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13039-13048. [41] LIU J J,HOU Q,CHENG M M,et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:10096-10105. [42] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018:3-19. [43] YE D,HONG G S,ZHANG Y,et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks[J]. The International Journal of Advanced Manufacturing Technology,2018,96(5):2791-801. |