• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (24): 18-33.doi: 10.3901/JME.2023.24.018

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

事件驱动考虑加工任务和监测状态的大型构件装配界面切削参数在线优化

王亚辉1,2, 郑联语1,3,4, 樊伟1,3,4, 赵雄1,3,4, 张月红1   

  1. 1. 北京航空航天大学机械工程及自动化学院 北京 100191;
    2. 航天材料及工艺研究所 北京 100076;
    3. 数字化设计与制造技术北京市重点实验室 北京 100191;
    4 航空高端装备智能制造技术工业和信息化部重点实验室 北京 100191
  • 收稿日期:2023-03-29 修回日期:2023-08-10 出版日期:2023-12-20 发布日期:2024-03-05
  • 通讯作者: 樊伟(通信作者),男,1989年出生,博士后。主要研究方向为航空航天高端装备智能制造技术、大部件机器人自适应加工技术、可重构柔性智能制造系统技术、智能制造数字孪生技术。E-mail:fanwei@buaa.edu.cn
  • 作者简介:王亚辉,男,1990年出生,博士。主要研究方向为刀具状态监测与预测、切削参数优化、数字化与智能制造技术;郑联语,男,1967年出生,博士,教授,博士研究生导师。研究方向为数字化与智能制造技术、可重构柔性制造、制造系统建模与仿真、下一代工业辅助技术及系统
  • 基金资助:
    国家自然科学基金资助项目(52205511)

Event-driven Online Optimization of Cutting Parameters for Assembly Interfaces of Large-scale Components Considering Machining Tasks and Monitoring States

WANG Yahui1,2, ZHENG Lianyu1,3,4, FAN Wei1,3,4, ZHAO Xiong1,3,4, ZHANG Yuehong1   

  1. 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;
    2. Aerospace Research Institute of Materials&Processing Technology, Beijing 100076;
    3. Beijing Key Laboratory of Digital Design and Manufacturing Technology, Beijing 100191;
    4. MIIT Key Laboratory of Intelligent Manufacturing Technology for Aeronautics Advanced Equipments, Beijing 100191
  • Received:2023-03-29 Revised:2023-08-10 Online:2023-12-20 Published:2024-03-05

摘要: 针对大型构件装配界面加工中刀具磨损和表面质量的监测状态与加工任务关联性弱、切削参数优化中未考虑刀具磨损的实际与理论值的差异性及对工人经验的强依赖性等问题,提出了一种事件驱动考虑加工任务和监测状态的切削参数在线优化方法。首先,建立了事件驱动的切削参数在线优化框架,利用事件处理技术监测装配界面加工过程,确保各阶段加工任务正确,进而通过事件驱动监测与优化方法。其次,在该框架下对异常监测事件(如刀具寿命报警、表面粗糙度报警等)处理,触发混合遗传粒子群优化算法实现切削参数在线优化。最后,通过某型飞机垂尾装配界面样件的加工试验数据和系统验证了所提方法的有效性。结果表明该方法能够有效保证大型构件装配界面的加工质量和效率,为加工过程的监测和切削参数在线自适应优化提供了理论基础和技术支持。

关键词: 装配界面, 事件驱动, 加工过程监测, 切削参数在线优化

Abstract: Aiming at the problems that the monitoring states such as tool wear and surface quality in the machining of large-scale components assembly interface are weakly related to the machining tasks, the difference between actual and theoretical values of tool wear is not considered in the optimization of cutting parameters, and the strong dependence on worker’s experience, etc. an event-driven online optimization method for cutting parameters is proposed that considers machining tasks and monitoring states. Firstly, an event driven online optimization framework of cutting parameters is established, and the event processing technology is used to monitor the machining process of the assembly interface to ensure that the machining tasks at each stage are correct, and then through the event-driven monitoring and optimization method. Secondly, under this framework, the abnormal monitoring events (such as tool life alarm, surface roughness alarm, etc.) are processed, and the hybrid genetic particle swarm optimization (GA-PSO) algorithm is triggered to realize the online optimization of cutting parameters. Finally, the effectiveness of the proposed method is verified by the machining experimental data and system of an aircraft vertical tail assembly interface sample. The results show that this method can effectively ensure the machining quality and efficiency of the assembly interface of large-scale components, and provides a theoretical basis for the monitoring of machining process and the online adaptive optimization of cutting parameters.

Key words: assembly interfaces, event-driven, machining process monitoring, online optimization of cutting parameters

中图分类号: