[1] 雷沛. 面向飞机大部件装配界面智能精加工的互操作技术与应用研究[D]. 北京:北京航空航天大学,2017. LEI Pei. Research on interoperable technologies and applications for smart finish machining of sssembly interfaces on large-scale aircraftcomponent[D]. Beijing:Beihang University, 2017. [2] 赵雄,樊伟,郑联语,等. 基于优化STD法的大飞机垂尾装配界面精加工过程模态参数识别[J]. 航空学报,2019,40(10):315-325. ZHAO Xiong,FAN Wei,ZHENG Lianyu,et al. Modal parameter identification of finishing assembly interface of vertical tail section of large aircraft based on optimized STD method[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(10):315-325. [3] FAN Wei,ZHENG Lianyu,JI Wei,et al. Eddy current-based vibration suppression for finish machining of assembly interfaces of large aircraft vertical tail[J]. Journal of Manufacturing Science and Engineering,2019,141(7):071012(1-16). [4] LIU Erliang,AN Wenzhao,XU Zhichao,et al. Experimental study of cutting-parameter and tool life reliability optimization in inconel 625 machining based on wear map approach[J]. Journal of Manufacturing Processes,2020,53:34-42. [5] HIPPALGAONKAR R,SHIN Y C. Robust optimization of machining conditions with tool life and surface roughness uncertainties[J]. International Journal of Production Research,2011,49(12-13):3963-3978. [6] ZUPERL U,KIKER E D,JEZERNIK K. Adaptive force control in high-speed machining by using a system of neural networks[C]//IEEE International Symposium on Industrial Electronics,July 09-13,2006,Canada:IEEE, 2007:148-153. [7] ZUPERL U,CUS F,REIBENSCHUH M. Neural control strategy of constant cutting force system in end milling[J]. Robotics & Computer Integrated Manufacturing,2011, 27(3):485-493. [8] LUO Ming,HOU Yongfeng,ZHANG Dinghua. Feedrate optimization for worn cutter with measured cutting force in rough milling[C]//IEEE International Conference on Advanced Intelligent Mechatronics,July 12-15,2016, Canada:IEEE,2016:345-350. [9] 金鸿宇. 薄壁件侧铣颤振与变形实时监控技术研究[D]. 哈尔滨:哈尔滨工业大学,2017. JIN Hongyu. Real-time monitoring and control for chatter and deflection of thin-walled parts in flank milling[D]. Harbin:Harbin Institute of Technology,2017. [10] 赵雄,郑联语,樊伟,等. 实时振动数据驱动的薄壁件平铣工艺参数自适应优化[J]. 机械工程学报,2020, 56(23):172-184. ZHAO Xiong,ZHENG Lianyu,FAN Wei,et al. Real-time machining vibration data driven milling process parameters adaptive optimization[J]. Journal of Mechanical Engineering,2020,56(23):172-184. [11] YANG L D,CHEN J C,CHOW H M,et al. Fuzzy-nets-based in-process surface roughness adaptive control system in end-milling operations[J]. International Journal of Advanced Manufacturing Technology,2006,28(3-4):236-248. [12] 安华,王喆,王国锋,等. 复合材料钻削表面粗糙度在线监测与加工参数自适应优化[J]. 机械工程学报, 2020,56(2):27-34,42. AN Hua,WANG Zhe,WANG Guofeng,et al. Research on on-line monitoring of surface roughness incomposite drilling and adaptive optimization of parameters[J]. Journal of Mechanical Engineering,2020,56(2):27-34,42. [13] 刘毫. 基于刀具磨损状态检测的铣削加工参数优化技术研究[D]. 哈尔滨:哈尔滨工业大学,2016. LIU Hao. Research on cutting parameter optimization in milling based on tool wear monitoring[D]. Harbin:Harbin Institute of Technology,2016. [14] BOUSDEKIS A,PAPAGEORGIOU N,MAGOUTASA B,et al. Enabling condition-based maintenance decisions with proactive event-drivencomputing[J]. Computers in Industry,2018,100:173-183. [15] ESMAEILIAN B,BEHDAD S,WANG Ben. The evolution and future of manufacturing:A review[J]. Journal of Manufacturing Systems,2016,39:79-100. [16] BABICEANU R,SEKER R. Big data and virtualization for manufacturing cyber-physical systems:A survey of the current status and future outlook[J]. Computers in Industry,2016,81(C):128-137. [17] MOURTZIS D,VLACHOU E,XANTHOPOULOS N,et al. Cloud-based adaptive process planning considering availability and capabilities of machine tools[J]. Journal of Manufacturing Systems,2016,39:1-8. [18] WANG Lihui,HAO Qi,SHEN Weiming. A novel function block based integration approach to process planning and scheduling with execution control[J]. International Journal of Manufacturing Technology and Management. 2007,11(2):228-250. [19] YANG Chen,PENG Tao,LAN Shuliin,et al. Towards Iot-enabled dynamic service optimal selection in multiple manufacturing clouds[J]. Journal of Manufacturing Systems,2020,56:213-226. [20] 张存吉,姚锡凡,张剑铭. 制造车间基于RFID与CEP的工件实时监测[J]. 湖南大学学报,2017,44(4):38-45. ZHANG Cunji,YAO Xifan,ZHANG Jianming. Real-time monitoring of workpieces based on RFID and CEP for manufacturing workshop[J]. Journal of Hunan University,2017,44(4):38-45. [21] CAO Wei,JIANG Pingyu,LU Ping,et al. Real-time data-driven monitoring in job-shop floor based on radio frequency identification[J]. International Journal of Advanced Manufacturing Technology,2017,92(5-8):2099-2120. [22] 陈伟兴. 生产过程制造物联关键事件主动感知与处理技术研究[D]. 贵阳:贵州大学,2016. CHEN Weixing. Research on active perception and processing of critical event the internet of manufacturing things[D]. Guiyang:Guizhou University,2016. [23] ZANG Chuanzhen,FAN Yushun,LIU Renjing. Architecture,implementation and application ofcomplex event processing in enterprise information systems based on RFID[J]. Information Systems Frontiers,2008, 10(5):543-553. [24] 滕洪钊,邓朝晖,吕黎曙,等. 多传感器信息融合的加工过程状态监测研究[J]. 机械工程学报,2022, 58(6):26-41. TENG Hongzhao,DENG Zhaohui,LÜ Lishu,et al. Research of process condition monitoring based on multi-sensor information fusion[J]. Journal of Mechanical Engineering,2022,58(6):26-41. [25] 刘献礼,李雪冰,丁明娜,等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报,2021, 57(10):196-219. LIU Xianli,LI Xuebing,DING Mingna,et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering,2021,57(10):196-219. [26] WANG Yahui,ZHENG Lianyu,WANG Yiwei. Event-driven tool condition monitoring methodology considering tool life prediction based on industrial internet[J]. Journal of Manufacturing Systems,2021,58:205-222. [27] WANG Yahui,WANG Yiwei,ZHENG Lianyu,et al. Online surface roughness prediction for assembly interfaces of vertical tail integrating tool wear under variable cutting parameters[J]. Sensors,2022(22):1991. [28] 王亚辉,郑联语,樊伟. 云架构下基于标准语义模型和复杂事件处理的制造车间数据采集与融合[J]. 计算机集成制造系统,2019,25(12):3103-3115. WANG Yahui,ZHENG Lianyu,FAN Wei. Data collection and fusion of manufacturing workshop based on standard semantic model andcomplex event processing under cloud architecture[J]. Computer Integrated Manufacturing Systems,2019,25(12):3103-3115. [29] LUCKHAM D. The power of events[M]. Boston:Addison-Wesley,2002. [30] KARANDIKAR J M,ABBAS A E,SCHMITZ T L. Tool life prediction using bayesian updating. Part 1:Milling tool life model using a discrete grid method[J]. Precision Engineering,2014,38(1):9-17. [31] KHORASANI A M,YAZDI R S,SAFIZADEH M S. Analysis of machining parameters effects on surface roughness:a review[J]. International Journal of Computational Materials Science & Surface Engineering,2012,5(1):68-84. [32] 杨晓勇. 钛合金铣削刀具磨损及表面完整性研究[D]. 天津:天津大学,2013. YANG Xiaoyong. Tool wear and surface integrity of titanium alloy milling[D]. Tianjin:Tianjin University,2013. |