[1] 王文静,谢基龙,刘志明,等. 基于循环对称结构制动盘的三维瞬态温度场仿真[J]. 机械工程学报,2002,38(12):131-134. WANG Wenjing,XIE Jilong,LIU Zhiming,et al. 3-D transient temperature field analysis and calculation for brake disc with cyclic symmetric structure[J]. Journal of Mechanical Engineering,2002,38(12):131-134. [2] QI H S,DAY A J. Investigation of disc/pad interface temperatures in friction braking[J]. Wear,2006,262(5):505-513. [3] STRÖMBERG N. An Eulerian approach for simulating frictional heating in disc-pad systems[J]. European Journal of Mechanics/A Solids,2011,30(5):673-683. [4] 周素霞,杨月,谢基龙. 高速列车制动盘瞬态温度和热应力分布仿真分析[J]. 机械工程学报,2011,47(22):126-131. ZHOU Suxia,YANG Yue,XIE Jilong. Analysis of transient temperature and thermal stress distribution on the high-speed strain brake disk by simulation[J]. Journal of Mechanical Engineering,2011,47(22):126-131. [5] 赵海燕,张海泉,汤晓华,等. 快速列车盘型制动热过程有限元分析[J]. 清华大学学报,2005,45(5):589-592. ZHAO Haiyan,ZHANG Haiquan,TANG Xiaohua,et al. Thermal FEM analysis of passenger railway car brake discs[J]. Journal of Tsinghua University,2005,45(5):589-592. [6] 孟德建,张彬,徐杰,等. 制动钳及其约束对制动器热机耦合特性的影响[J]. 同济大学学报,2019,47(5):704-713. MENG Dejian,ZHANG Bin,XU Jie,et al. Effect of brake caliper and its restraint on thermo-mechanical coupling characteristics of disc brake[J]. Journal of Tongji University,2019,47(5):704-713. [7] 王国顺. 摩擦块分布方式对摩擦盘温度场和应力场的影响[J]. 润滑与密封,2014,39(3):43-47. WANG Guoshun. The influence of friction block distribution mode on temperature and stress field of friction disk[J]. Lubrication Engineering,2014,39(3):43-47. [8] 李月明,杨俊英,韩晓明,等. 接触面积和接触方式对制动盘温度场的影响[J]. 铁道机车车辆,2020,40(3):23-28. LI Yueming,YANG Junying,HAN Xiaoming,et al. Influence of contact area and contact mode on temperature field of brake disc[J]. Railway Locomotive & Car,2020,40(3):23-28. [9] 李继山,林祜亭,李和平. 高速列车合金锻钢制动盘温度场仿真分析[J]. 铁道学报,2006,28(4):45-48. LI Jishan,LIN Huting,LI Heping. Simulation analysis on the alloy-forge steel brake disc temperature field for a high-speed train[J]. Journal of the China Railway Society,2006,28(4):45-48. [10] 黄健萌,高诚辉,唐旭晟,等. 盘式制动器热-结构耦合的数值建模与分析[J]. 机械工程学报,2008,44(2):145-151. HUANG Jianmeng,GAO Chenghui,TANG Xusheng,et al. Numerical modeling and analysis of the thermal-structure coupling of the disc brake[J]. Journal of Mechanical Engineering,2008,44(2):145-151. [11] 潘公宇,王继业. 转动热源作用下的制动盘顺序热机耦合分析[J]. 机械设计与制造,2020(8):126-130. PAN Gongyu,WANG Jiye. Sequential thermo-mechanical coupling analysis of brake disk under rotating heat source[J]. Machinery Design & Manufacture,2020(8):126-130. [12] HONG H,KIM M,LEE H,et al. The thermo-mechanical behavior of brake discs for high-speed railway vehicles[J]. Journal of Mechanical Science and Technology,2019,33(4):1711-1721. [13] GRZES P. Finite element analysis of disc temperature during braking process[J]. Acta Mechanica Et Automatica,2009,3(4):36-42. [14] XIANG Z Y,CHEN W,MO J L,et al. The effects of the friction block shape on the tribological and dynamical behaviors of high-speed train brakes[J]. International Journal of Mechanical Sciences,2021,194:106184. [15] WU Y K,XU J W,WANG X C,et al. The effect of damping components on the interfacial dynamics and tribological behavior of high-speed train brakes[J]. Applied Acoustics,2021,178(1):107962. [16] 全鑫,莫继良,王安宇,等. 高速列车制动片摩擦块尺寸对制动噪声特性的影响[J]. 润滑与密封,2019,44(9):50-55. QUAN Xin,MO Jiliang,WANG Anyu,et al. Effect of Friction block size of high-speed train brakes on noise characteristics[J]. Lubrication Engineering,2019,44(9):50-55. [17] FAN Z Y,XIANG Z Y,TANG B,et al. Effect of surface modification on the tribological properties of friction blocks in high-speed train brake systems[J]. Tribology Letters,2021,69(1):1-19. [18] 孙超,高飞,符蓉,等. 制动闸片结构特征的表征方法研究[J]. 铁道机车车辆,2012,32(4):49-54. SUN Chao,GAO Fei,FU Rong,et al. Research of structure characterization method of brake pad[J]. Railway Locomotive & Car,2012,32(4):49-54. [19] WANG G,FU R. Impact of brake pad structure on temperature and stress fields of brake disc[J]. Advances in Materials Science and Engineering,2013,2013(1):1-9. [20] DEGALLAIX G,DUFRÉNOY P,WONG J,et al. Failure mechanisms of TGV brake discs[C]//Key Engineering Materials. Trans Tech Publications Ltd,2007,345:697-700. [21] YANG Z,HAN J,LI W,et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis,2013,34:121-128. [22] HAN M J,LEE C H,PARK T W,et al. Low and high cycle fatigue of automotive brake discs using coupled thermo-mechanical finite element analysis under thermal loading[J]. Journal of Mechanical Science and Technology,2018,32(12):5777-5784. [23] WU S C,ZHANG S Q,XU Z W. Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc[J]. International Journal of Fatigue,2016,87:359-369. [24] 张立军,陈远,刁坤,等. 盘式制动器接触压力与热机耦合特性仿真分析[J]. 同济大学学报,2013,41(10):1554-1561. ZHANG Lijun,CHEN Yuan,DIAO Kun,et al. Computational investigation into disc-pads pressure distribution and thermomechanical coupling characteristics of brake pads in disc brake[J]. Journal of Tongji University,2013,41(10):1554-1561. [25] CHO S K,CHOI J H,LEE Y M,et al. Life evaluation of a disk brake of railway vehicles considering pressure distributions at a frictional surface[J]. Key Engineering Materials,2007,84:303-306. |